首页> 外文会议>SAE World Congress Exhibition >Optimization of Crankshaft Torsional Rigidity for Fatigue Strength Improvement Using CAE
【24h】

Optimization of Crankshaft Torsional Rigidity for Fatigue Strength Improvement Using CAE

机译:优化CAE疲劳强度改善曲轴扭转刚度

获取原文

摘要

Automotive industries are using forged crankshafts for higher performance applications due to its high strength. Torsional rigidity plays an important role in the performance of crankshaft. The improved torsional rigidity of a forged crankshaft provides better torsion strength and improves engine performance. Present competitive market demands fast product development with lower cost and light weight design while maintaining fatigue strength and other functional requirements. The study aims: a) evaluation of crankshaft torsion rigidity by analytical method and its Finite Element Analysis (FEA) correlation, b) evaluation of twist angle using virtual testing and its correlation with test bench data c) evaluate most critical geometric parameters of crankshaft (Crankpin diameter, Pin width, Throw, Web thickness and Web width) and their quantitative contribution in torsional rigidity. An extensive analytical study for torsional rigidity is carried out for various crankshafts by varying the said geometric parameters. These analytical results are compared with FEA (Finite Element Analysis) results. Torsional rigidity evaluated by analytical method and FEA correlates with 85-95% accuracy. Twist angle data also matches well with actual test bench data. From this study major critical geometric parameters and their quantitative contribution in torsion rigidity is evaluated. This study shows that, Torsional Rigidity is directly proportional to pin diameter, web width, web thickness and inversely proportional to throw and pin width. Among all the geometric parameters pin diameter and web width are the major contributors to the torsional rigidity. An increase of 10% in pin diameter produces an increase about 15 to 17% in torsional rigidity; while similar increase of pin width and throw decreases torsional rigidity about 3 to 3.8% and 4 to 4.6% respectively. An increase of 10% in web width produces an increase about 10 to 14% in torsion rigidity; while similar increase of web thickness increases torsional rigidity about 4.6 to 4.8%. An increase of 10% in each pin width, journal width and web thickness maintains same torsional rigidity. This study will help to predict and improve torsional rigidity at the design stage. It is also useful to suggest design modifications for existing design and develop new crankshafts for higher performance/weight ratios to achieve expected torsional rigidity and fatigue strength by combination of CAE and analytical techniques.
机译:汽车行业采用伪造的曲轴,由于其高强度,用于更高的性能应用。扭转刚度在曲轴的性能中起着重要作用。锻造曲轴的改善扭转刚度提供更好的扭转强度并提高发动机性能。目前竞争力的市场需要以较低的成本和轻量级设计的快速产品开发,同时保持疲劳强度和其他功能要求。该研究的目的:a)通过分析方法评估曲轴扭转刚度及其有限元分析(FEA)相关性,B)使用虚拟测试的扭曲角度评估及其与测试台数据的相关性C)评估曲轴最关键的几何参数( Crankpin直径,引脚宽度,抛出,幅材厚度和腹板宽度)及其在扭转刚度中的定量贡献。通过改变所述几何参数,对各种曲轴进行扭转刚度的广泛分析研究。将这些分析结果与FEA(有限元分析)结果进行比较。通过分析方法和FEA评估的扭转刚度与85-95%的精度相关。扭曲角度数据也与实际测试台数据匹配。从该研究开始,评估主要关键几何参数及其在扭转刚度中的定量贡献。本研究表明,扭转刚度与销直径,幅材宽度,幅材厚度成正比,并与投射和销宽度成反比。在所有几何参数引脚直径和幅材宽度中是扭转刚度的主要贡献者。销直径增加10%,扭转刚度的增加约15%至17%;虽然销宽度的类似增加和抛出的倾斜刚度分别降低约3%至3.8%和4至4.6%。腹板宽度的增加10%的扭转刚度产生约10%至14%;虽然类似的腹板厚度的增加会增加扭转刚度约4.6%至4.8%。每个销宽度的增加10%,轴颈宽度和幅材厚度保持相同的扭转刚度。本研究将有助于预测和改善设计阶段的扭转刚度。建议现有设计的设计修改以及开发新的曲轴以实现更高的性能/重量比,以通过CAE和分析技术的组合实现预期的扭转刚度和疲劳强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号