首页> 外文会议>PACRIM Congress >Geometallurgy of tailings: unveiling the next generation of mineral resources
【24h】

Geometallurgy of tailings: unveiling the next generation of mineral resources

机译:尾矿的几何冶金:揭示下一代矿产资源

获取原文

摘要

Never before have the challenges of mine waste management been so important to ensure ongoing progress and development of mining operations with licence to operate now ranked as the number 1 business risk facing the mining and metals industry (Ernest Young, 2018). Societal expectations increasingly demand the sector to commit and contribute to community, government, employees and environment needs beyond the life-of-mine. This includes realistic planning for the ongoing management of mine waste storage facilities and their eventual closure. Too few global examples of successful mine closure exist for a myriad of reasons, the most important of which is the poor approach to the chemical and physical characterisation of mine waste (e.g., waste rock, tailings, slag and spent heap leach materials). Ultimately, these data inform the engineering design for the long-term storage of these waste materials. If they are not well designed then there is strong potential to induce acid and metalliferous drainage (AMD) whereby sulphides contained in mine waste oxidise (Dold, 2017) or catastrophic structural failures can occur as demonstrated at the Brumadinho Dam, Brazil in January 2019. AMD is characterised by low pH, high sulphate and metals which negatively impact on the water quality of the receiving environment (Dold, 2017; Naidu et al, 2019). Once AMD generation has started, stopping and managing it is technically challenging, costing mining operations and government bodies many millions of dollars to actively manage (Naidu et al., 2019). For example, the mining industry in Tasmania was established in the late 1800s with activities focussed in the west and north east of the state with a range of commodities sought including gold, copper, lead, zinc, silver and tin (Walshe and Heithersay, 1995). Today, hundreds of historic mine waste features remaining on the land surface (Figure 1) many of which require ongoing management. But, maps of historic mine locations should not be viewed as only conveying the distribution of acid forming materials, they also provide the location of concentrated outcrops of, often fine grained, sulphides. When considering the advances made in metallurgical processing technologies since the deposition of historical (ie late 1800s) waste and the changing thirst for commodities (ie increased demands for cobalt, lithium and REEs; Grandell et al, 2016) there is strength in the business case for processing mining waste. By adopting a geometallurgical characterisation approach (defined in Dominy et al, 2018) to mine waste this can be better defined as this extended abstract summarises using a case study example from Western Tasmania, Australia.
机译:从来没有在矿井废物管理挑战中是如此重要,以确保持续进展和开发采矿业务的开采,现在作为采矿和金属行业面临的1号业务风险(Ernest Young,2018)。社会期望越来越多地要求该部门承诺和贡献社区,政府,员工和环境需求超越矿山的需求。这包括矿井废物储存设施持续管理及其最终关闭的现实规划。对于无数的原因,成功矿井关闭的全球示例太少了,其中最重要的是,这是矿井废物的化学和物理特征的差的方法(例如,废岩,尾矿,矿渣和堆堆浸出材料)。最终,这些数据通知了工程设计以实现这些废料的长期储存。如果它们没有精心设计,那么诱发酸和矿物质的含量强大的潜力,其中矿井废物氧化(Dold,2017)或灾难性结构失败中包含的硫化物可以在2019年1月巴西的Brumadinho Dam所示。 AMD的特点是低pH,高硫酸盐和金属,对接收环境的水质产生负面影响(Dold,2017; Naidu等,2019)。一旦AMD一代开始,停止和管理它在技术上挑战,矿业挖掘运营和政府机构数百万美元积极管理(Naidu等,2019)。例如,塔斯马尼亚矿业的矿业成立于1800年代后期,共同关注西部和东北部门的国家,其中一系列商品寻求金,铜,铅,锌,银和锡(Walshe和Heithersay,1995 )。如今,剩下的数百种历史矿井废物特征在土地面上(图1)许多需要持续管理。但是,历史矿井地点的地图不应被视为仅传达酸形成材料的分布,它们还提供浓缩露头的位置,通常细粒,硫化物。在考虑冶金加工技术中所做的进展,因为历史(即1800年代后期)废物和更改的商品的渴望(即增加对钴,锂和芦荟的需求; Grandell等,2016)在商业案例中有力量用于处理采矿废物。通过采用几何冶金表征方法(在Dominy等,2018中定义)来挖掘,可以更好地定义,因为这种扩展摘要总结了使用澳大利亚西塔斯马西亚西部的案例研究示例。

著录项

  • 来源
    《PACRIM Congress》|2019年|354p|共4页
  • 会议地点
  • 作者

    A. Parbhakar-Fox;

  • 作者单位
  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类 TD8-532;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号