【24h】

Co-rotating and Counter-rotating Coaxial Rotor Performance

机译:共旋转和反向旋转同轴转子性能

获取原文

摘要

The success of Sikorsky's X2 technology demonstrator program has revitalized research interest in coaxial rotor performance. Generally, a counter-rotating coaxial rotor is more efficient than the corresponding single rotor with twice the number of blades. Some of the performance gains are attributed to the unequal thrust sharing between the two rotors with the upper rotor, which operates more efficiently without direct interference of the lower rotor wake, carrying a larger share of the thrust. Furthermore, for counter-rotating coaxial rotors the swirl in the wake of the upper rotor has a beneficial effect in mitigating at least some of the swirl losses for the lower rotor. Experimental measurements are somewhat inconclusive. One experiment with a three-bladed coaxial rotor system shows that there is indeed some swirl recovery, and a counter-rotating coaxial rotor gives better performance than a co-rotating coaxial rotor. Another, more recent, experiment with a two-bladed coaxial rotor system showed that the performance of the co-rotating coaxial rotor varied significantly with the blade separation angle (or the index angle) between the two rotors. At some separation angles, the co-rotating rotor actually performed better than the counter-rotating rotor. This behavior contradicts the swirl recovery hypothesis. Perhaps, some of these differences stem from different induced inflow effects with blade separation angles. This will be explored in the present work using performance computations of both counter-and co-rotating coaxial rotors using a free vortex wake (FVW) model. Such a model has lower fidelity than more accurate computational fluid dynamics (CFD) models, but it allows easy separation of different constituents of the rotor performance, such as induced inflow/power and interactional effects, and provides physical insights into the resulting rotor performance behavior.
机译:西科斯基公司X2技术验证计划的成功振兴同轴旋翼性能的研究兴趣。通常,反向旋转的同轴的转子是比相应的单转子具有叶片的数量的两倍更有效。一些性能增益归因于与上转子两个转子之间的不相等的推力共享,这更有效地操作,而不降低转子尾流的直接干扰,承载推力的较大份额。此外,用于反向旋转的同轴旋翼的上转子的尾迹涡旋具有减轻至少一些的用于下转子的涡流损失的有益效果。实验测量是有些不确定的。有三叶片转子同轴系统显示确实是有一些漩涡恢复,反向旋转的转子同轴一项实验,使其比同向旋转同轴旋翼更好的性能。另一个较新的实验用双叶片转子同轴系统表明,同向旋转的同轴转子的性能与两个转子之间的叶片分离角(或索引角)显著变化。在一些分离的角​​度,共同旋转的转子实际进行比反向旋转的转子更好。这种行为违背了漩涡恢复的假设。也许,其中的一些差异从与刀片分离的角度不同引起的流入效应干。这将在利用使用自由涡流尾迹(FVW)模型两者反和共旋转共轴的转子的性能的计算目前的工作加以探讨。这样的模型具有较低保真度比更精确的计算流体动力学(CFD)模型,但它允许转子性能的不同组分,例如诱导的流入/功率和互动效果容易分离,并提供物理见解得到的转子性能行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号