首页> 外文会议>Conference on Fluvial Hydraulics >Roughness parameters in shallow open-channel flows
【24h】

Roughness parameters in shallow open-channel flows

机译:浅滩流动中的粗糙度参数

获取原文

摘要

The roughness parameters of shallow open-channel flows over very rough walls were investigated in the laboratory with particle image velocimetry (PIV) for two rough beds (λ_f= [0.2,0.4]) and three roughness-height to water-depth confinement or submergence ratios (α = [0.15,0.24,0.33]). The flow was measured both within the canopy and above without disturbing the flow by gaining complete optical access with specially developed techniques. This allowed the flow to be spatially resolved at the scale of the roughness elements so that the change of scale to ID flow parameters could be evaluated. In particular, the measurements enabled reliable estimates of the double-averaged mean and turbulence profiles to be obtained by minimizing and quantifying the usual errors introduced by limited spatial sampling, as well as temporal sampling. To estimate correctly the total shear stress or frinction velocity, the measurements show that the dispersive stresses are necessary, unlike often assumed. In order to better define and determine the roughness layer height, often introduced into the boundary condition for numerical models, a new methodology based on the measured spatial dispersion is used which takes into account the often unavoidable temporal sampling errors (Florens et al.,2013). The results reveal values well below the usual more ad hoc estimates. The ID double-averaged statistics are then used to investigate the effect of low relative submergence of the roughness elements on the roughness parameters and the logarithmic law. The logarithmic law is shown to persist for submergence ratios at least as high as 0.33, while the roughness sublayer largely extends into it. A dependence of the roughness length on relative submergence is observed, but not for the displacement height.
机译:在实验室中研究了浅开通道流过非常粗糙的墙壁的粗糙度参数,用于两个粗糙的床(λ_f= [0.2,0.4])和三个粗糙度高度的粒子图像速度(PIV)和水深限制或浸没比率(α= [0.15,0.24,0.33])。通过通过通过特殊开发的技术获得完整的光学访问,在树冠和上方测量流程,而不会扰乱流动。这允许流动在粗糙度元件的刻度下在空间上解析,从而可以评估尺度变化的变化。特别地,测量能够通过最小化和量化有限的空间采样,以及时间采样来实现通过最小化和量化通常的误差来获得的双平均均值和湍流轮廓的可靠估计。为了正确估计总剪切应力或Frinctenct速度,测量结果表明,与经常假设不同,则需要进行分散应力。为了更好地定义和确定粗糙度层高度,通常引入数字模型的边界条件,使用基于测量的空间分散的新方法,以考虑到通常不可避免的时间采样误差(Florens等,2013 )。结果显示出低于通常更多临时估计的值。然后使用ID双平均统计来研究粗糙度元素对粗糙度参数和对数法的影响。显示对数定律至少高达0.33的潜水率持续存在,而粗糙度子层在很大程度上延伸到其中。观察到粗糙度长度对相对潜水率的依赖性,但不适用于位移高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号