首页> 外文会议>Photons and neurons >High Precision Spatial and Temporal control of neural circuitry using a semi-automated, multi-wavelength nanopatterning system
【24h】

High Precision Spatial and Temporal control of neural circuitry using a semi-automated, multi-wavelength nanopatterning system

机译:使用半自动,多波长纳米图案化系统的神经电路的高精度时空控制

获取原文
获取原文并翻译 | 示例

摘要

It has been one of the most discussed and intriguing topics -the quest to control neural circuitry as a precursor to decoding the operations of the human brain and manipulating its diseased state. Electrophysiology has created a gateway to control this circuitry with high precision. However, it is not practical to apply these techniques to living systems because these techniques are invasive and lack the spatial resolution necessary to properly address various neural cell components, cell assemblies or even tissues. Here we describe a new instrument that has the potential to replace the conventional patch clamping technique, the workhorse of neural physiology. A Digital Light Processing system from Texas Instruments and an Olympus IX71 inverted microscope were combined to achieve neuronal control at a sub-cellular spatial resolution. Accompanying these two technologies can be almost any light source, and for these experiments a pair of pulsed light sources that produced two pulse trains at different wavelengths tuned to activate or inactivate selectively the ChR2 and NpHR channels that were cloned to express light sensitive versions in neurons. Fura-2 ratiometric fluorescent dye would be used to read-out calcium activity. The Pulsed light sources and a filter wheel are under computer control using a National Instruments digital control board and a CCD camera used to acquire real time cellular responses to the spatially controlled pulsed light channel activation would be controlled and synchronized using NI LabVIEW software. This will provide for a millisecond precision temporal control of neural circuitry. Thus this technology could provide researchers with an optical tool to control the neural circuitry both spatially and temporally with high precision.
机译:它一直是讨论最多,最引人入胜的话题之一-寻求将神经电路控制为解码人脑操作并控制其患病状态的先驱。电生理学已经创建了一个网关,可以高精度地控制该电路。然而,将这些技术应用于活体系统是不切实际的,因为这些技术具有侵入性,并且缺乏正确处理各种神经细胞成分,细胞装配体甚至组织所需的空间分辨率。在这里,我们描述了一种新的器械,它有可能取代传统的膜片钳技术,即神经生理学的主力。将德州仪器(TI)的数字光处理系统和奥林巴斯IX71倒置显微镜组合在一起,以亚细胞空间分辨率实现神经元控制。伴随这两种技术的几乎所有光源都可以使用,对于这些实验,一对脉冲光源产生了两个不同波长的脉冲序列,这些脉冲序列经过调整以选择性地激活或灭活ChR2和NpHR通道,这些通道被克隆以在神经元中表达光敏版本。 。 Fura-2比例荧光染料将用于读出钙的活性。脉冲光源和滤光片由美国国家仪器(National Instruments)数字控制板控制,而用于获取对空间控制脉冲光通道激活的实时细胞响应的CCD摄像机将通过NI LabVIEW软件进行控制和同步。这将为神经电路提供毫秒级的精确时间控制。因此,这项技术可以为研究人员提供一种光学工具,以高精度在空间和时间上控制神经回路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号