首页> 外文会议>Physics and technology of high-k materials 9 >MOS Interface Control Technologies for Ⅲ-Ⅴ/Ge Channel MOSFETs
【24h】

MOS Interface Control Technologies for Ⅲ-Ⅴ/Ge Channel MOSFETs

机译:Ⅲ-Ⅴ/ Ge沟道MOSFET的MOS接口控制技术

获取原文
获取原文并翻译 | 示例

摘要

MOSFETs using channel materials with low effective mass have been regarded as strongly important for obtaining high current drive and low supply voltage CMOS under sub 10 nm regime. From this viewpoint, attentions have recently been paid to Ⅲ-Ⅴ and Ge channels. However, one of the most critical issues for realizing Ge/Ⅲ-Ⅴ MOSFETs is gate insulator formation with superior MOS interface quality on Ge/Ⅲ-Ⅴ. In this paper, we focus on the possible solutions for gate stack technologies on Ge/Ⅲ-Ⅴ. As for Ge, GeO_2/Ge interfaces have been regarded as promising. However, these interfaces have still employed thick GeO_2 layers. Recently, we have succeeded in thin EOT gate stacks with Ge oxide interfacial layers by using ECR plasma post oxidation. The high quality Al_2O_3/GeO_x/Ge gate stacks were fabricated by exposing the ALD Al_2O_3/Ge structures to ECR oxygen plasma and oxidizing the Ge surface through the very thin ALD Al_2O_3 layer. We present our recent results of the interface properties using this interface. As for InGaAs channels, we have also proposed a novel interfacial control technology utilizing InGaAs surface nitridation by ECR nitrogen plasma and successive post metallization annealing. This interfacial layer combined with an ECR sputtering SiO_2 or an ALD Al_2O_3 gate insulator is shown to reduce D_(it) down to low order of 10~(11) cm~(-2)eV~(-1). The physical origin of this D_(it) reduction and the role of the nitridation are discussed.
机译:使用具有低有效质量的沟道材料的MOSFET已被认为对于在10 nm以下的制程获得高电流驱动和低电源电压CMOS非常重要。从这个观点出发,近来已经关注了Ⅲ-Ⅴ和Ge通道。然而,实现Ge /Ⅲ-ⅤMOSFET的最关键问题之一是在Ge /Ⅲ-Ⅴ上形成具有优良MOS界面质量的栅极绝缘体。在本文中,我们将重点放在Ge /Ⅲ-Ⅴ上栅堆叠技术的可能解决方案上。对于Ge,GeO_2 / Ge界面被认为是有希望的。但是,这些界面仍然采用了厚的GeO_2层。最近,我们已经通过使用ECR等离子后氧化技术成功实现了具有Ge氧化物界面层的薄EOT栅堆叠。通过将ALD Al_2O_3 / Ge结构暴露于ECR氧等离子体并通过非常薄的ALD Al_2O_3层氧化Ge表面,可以制造出高质量的Al_2O_3 / GeO_x / Ge栅叠层。我们使用此接口展示了接口属性的最新结果。至于InGaAs通道,我们还提出了一种新颖的界面控制技术,该技术利用ECR氮等离子体对InGaAs表面进行氮化,并进行连续的后金属化退火。该界面层与ECR溅射SiO_2或ALD Al_2O_3栅极绝缘体相结合,可将D_(it)降低至10〜(11)cm〜(-2)eV〜(-1)的低阶。讨论了这种D_(it)还原的物理起源以及氮化作用。

著录项

  • 来源
  • 会议地点 Boston MA(US);Boston MA(US)
  • 作者单位

    The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656 Japan;

    The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656 Japan;

    The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656 Japan;

    The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656 Japan;

    The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656 Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 半导体技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号