首页> 外文会议>Plasmonics in biology and medicine X >Controlling the Nanopore Fabrication Using High Energy Electron Beam Exposure
【24h】

Controlling the Nanopore Fabrication Using High Energy Electron Beam Exposure

机译:使用高能电子束曝光控制纳米孔的制造

获取原文
获取原文并翻译 | 示例

摘要

Recently there has been tremendous interest about the dynamical sequence of fabrication of the solid state nanopore due to its capability of the nanosize solid state biosensor as a single molecule sensor. Depending upon the instruments such as transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM), the dynamics of nanopore formation present different physical mechanisms. In this report, formation of the nanopores was examined. Metallic nanopores with ~ 50 nm diameter on top of the oxide pyramid were fabricated using conventional Si microfabrication techniques followed by wet isotropic etching of the oxide; sputter metal deposition followed by the focused ion beam (FIB) techniques. No shrinking phenomena were observed for the nanopore diameter greater than 50 nm under electron beam irradiation using TEM. However, for high scanning electron beam irradiation using FESEM, shrinking of the Au nanopore was always observed. We do believe that these phenomena can be attributed to the liquid phase surface modification for TEM electron beam and adiabatic solid state phase surface modification for high scanning FESEM. For a huge amount of energy input from high scan rate and the poor thermal conduction to its surrounding area, the energy spike inside the electron penetration area would occur. However, a TEM electron beam irradiation without repetitive scan can provide the liquid phase surface modification.
机译:近年来,由于其具有纳米尺寸固态生物传感器作为单分子传感器的能力,因此对固态纳米孔的制造动态过程引起了极大的兴趣。取决于诸如透射电子显微镜(TEM)和场发射扫描电子显微镜(FESEM)的仪器,纳米孔形成的动力学表现出不同的物理机制。在该报告中,检查了纳米孔的形成。使用常规的硅微细加工技术,然后对氧化物进行湿法各向同性蚀刻,可以在氧化物金字塔的顶部制造直径约50 nm的金属纳米孔。溅射金属沉积,然后聚焦离子束(FIB)技术。在使用TEM的电子束照射下,对于大于50nm的纳米孔直径没有观察到收缩现象。然而,对于使用FESEM的高扫描电子束照射,总是观察到Au纳米孔的收缩。我们确实相信这些现象可归因于TEM电子束的液相表面改性和高扫描FESEM的绝热固态相表面改性。对于来自高扫描速率和到其周围区域的不良热传导的大量能量输入,将在电子穿透区域内部发生能量尖峰。然而,没有重复扫描的TEM电子束照射可以提供液相表面改性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号