【24h】

AEROELASTIC STABILITY OF A HELICOPTER BLADE WITH A SMART SPRING

机译:具有智能弹簧的直升机叶片的气动弹性稳定性

获取原文
获取原文并翻译 | 示例

摘要

The aeroelastic stability of a uniform, untwisted hingeless "smart" helicopter rotor blade has been analysed. The concept of a "smart blade" is achieved by implementing a piezoelectric stack at an appropriate location along the length of a host blade such that upon actuation it acts as a "smart spring" that enters the load path becoming an integral part of the host structure. As the result, the stiffness characteristics of the rotor can be altered causing modal damping augmentation of the blade. The blade is modelled as an aeroelastic cantilevered slender beam undergoing lead-lag, flap and torsional motion. As a first attempt, hover condition is considered with no offsets between the elastic, aerodynamic and tension axes, with the pre-cone angle set equal to zero. In anticipation of future experimental verification of this concept, a reduced scale model of a Eurocopter BO 105 helicopter blade has been designed and used as the base rotor in this investigation. The corresponding linearised perturbation equations of motion for the smart blade that describe the unsteady blade motion about the equilibrium operating conditions are obtained by applying Galerkin's method to the nonlinear, partial, differential equations of motion of the system. These differential equations whose coefficients are periodic functions of time are solved using Floquet method. The stability of motion is then investigated using the standard techniques. Including the base line cases, six different regimes of actuation are investigated, and six different design cases are considered. It is shown that using a judicious actuation scheme, the smart spring has the potential of acting as a damper to eliminate divergence and flutter instabilities of the individual blades.
机译:已经分析了均匀,未扭曲的无铰链“智能”直升机旋翼桨叶的气动弹性稳定性。 “智能刀片”的概念是通过在沿主刀片长度的适当位置安装压电叠层来实现的,这样,在致动时,压电叠层就可以充当“智能弹簧”,进入负载路径,成为主机的组成部分结构体。结果,可以改变转子的刚度特性,从而引起叶片的模态阻尼增大。叶片建模为经过超前滞后,襟翼和扭转运动的气动弹性悬臂细长梁。作为首次尝试,考虑悬停条件,在弹性,空气动力学和张力轴之间没有偏移,且前圆锥角设置为零。为了对这个概念进行进一步的实验验证,已经设计了欧洲直升机公司BO 105直升机叶片的缩小模型,并在此研究中用作基础旋翼。通过将Galerkin方法应用于系统的非线性,局部,微分运动方程,可以获得描述智能叶片相应运动的线性线性摄动方程,该方程描述了围绕平衡工况的非稳态叶片运动。这些系数是时间的周期函数的微分方程使用Floquet方法求解。然后使用标准技术研究运动的稳定性。包括基线情况,研究了六个不同的致动机制,并考虑了六个不同的设计情况。结果表明,使用明智的致动方案,智能弹簧具有充当减震器的作用,可以消除单个叶片的发散和颤动不稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号