【24h】

DISLOCATION FORMATION DURING VAPOR DEPOSITION OF EPITAXIAL MULTILAYERS

机译:气相多层膜气相沉积过程中的位错形成

获取原文
获取原文并翻译 | 示例

摘要

A molecular dynamics method has been used to study the formation of dislocations during the vapor deposition of NiFe/Au/NiFe/Au and CoFe/NiFe/CoFe/Cu multilayers. We observed the direct nucleation of misfit dislocations (with zero critical thickness) at (111) interfaces in the NiFe/Au/NiFe/Au system. Both the dislocation configuration and density observed in the simulations were similar to those reported in HRTEM experiments. A misfit energy increasing dislocation structure was found in simulated CoFe/NiFe/CoFe/Cu multilayers. These dislocations were formed during deposition on the (111) surface of the f.c.c. lattice. Deposited adatoms were able to either occupy f.c.c. or h.c.p. sites if the energy difference between these sites were minor (e.g., ~ 2meV). This resulted in islands with h.c.p. stacking and the creation of partial dislocations at the f.c.c and h.c.p. domain boundaries. Since these boundaries were filled the last and tended to have missing atoms, the surface layer tended to have less planes compared to the underlayer even the surface atoms were slightly smaller. This phenomenon is negligible for large lattice mismatch interfaces such as NiFe/Au where the lattice mismatch dominates the dislocation nucleation, but is relatively significant for small lattice mismatch interfaces such as CoFe/Cu.
机译:分子动力学方法已用于研究NiFe / Au / NiFe / Au和CoFe / NiFe / CoFe / Cu多层膜气相沉积过程中位错的形成。我们在NiFe / Au / NiFe / Au系统的(111)界面观察到失配位错(临界厚度为零)的直接成核。在模拟中观察到的位错构型和密度都与HRTEM实验中报道的相似。在模拟的CoFe / NiFe / CoFe / Cu多层膜中发现了失配能增加的位错结构。这些位错是在f.c.c的(111)表面上沉积期间形成的。格子。沉积的原子能够占据f.c.c.或h.c.p.如果这些位点之间的能量差较小(例如〜2meV),则表示这些位点。这导致了h.c.p.堆积并在f.c.c和h.c.p.处产生部分位错域边界。由于这些边界最后被填满并倾向于缺少原子,因此与表面层相比,表面层倾向于具有较少的平面,即使表面原子稍小。对于较大的晶格失配界面(例如NiFe / Au),这种现象可以忽略不计,其中晶格失配主导位错成核,但对于较小的晶格失配界面(例如CoFe / Cu)则相对重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号