【24h】

Dynamic Wavefront Control for Lightweight Mirrors in Space Telescopes

机译:太空望远镜中轻型镜的动态波前控制

获取原文
获取原文并翻译 | 示例

摘要

Future space telescopes require larger apertures to continue to improve performance. However, balancing the large, high performance optics with the desire for lightweight systems proves quite challenging. One way to achieve both goals is to utilize active, on-orbit wavefront control. A promising method of wavefront control implementation is surface-parallel piezo-electric actuation. The primary mirror backplane is ribbed to provide increased stiffness even at very low areal densities, with piezo-electric actuators embedded at the top of each rib. When the piezo-electrics expand or contract, they bend the surface of the mirror and can be used to directly correct for dynamic distortions of the wavefront. In addition, rigid-body petal control can be used to allow for the possibility of systems with segmented primary mirrors. This paper examines the implementation of both the piezoelectric deformable mirror and petal wavefront controllers, along with their implications on both optical performance and stability robustness. The systems analyzed in this paper are integrated models of the entire space telescope system, considering the transmission of disturbances and vibrations from the reaction wheels in the bus through the structure, isolators, and bipods to the aperture. The deformable mirror control is performed using a Linear Quadratic Gaussian (LQG) controller, while the mirror segment control is performed using a positive position feedback (PPF) controller. For all cases, the wavefront error is the primary optical performance metric and is calculated using the Zernikes of the primary mirror. The major deterrents to the use of control are complexity and the loss of stability robustness. The integrated model allows for the calculation of all metrics together to enable the examination of the potential benefits of implementing dynamic wavefront control.
机译:未来的太空望远镜需要更大的孔径才能继续提高性能。但是,要在大型,高性能光学器件和轻型系统的需求之间取得平衡是非常困难的。实现两个目标的一种方法是利用主动的在轨波前控制。波前控制实现的一种有前途的方法是表面平行压电致动。主镜底板带有肋骨,即使在极低的面密度下也能提供更高的刚度,并在每个肋骨的顶部都嵌入了压电致动器。当压电体膨胀或收缩时,它们会使反射镜的表面弯曲,并可用于直接校正波前的动态畸变。此外,可以使用刚体花瓣状控制来允许系统带有分段主镜的可能性。本文研究了压电可变形反射镜和花瓣波前控制器的实现,以及它们对光学性能和稳定性的影响。本文分析的系统是整个空间望远镜系统的集成模型,考虑了扰动和振动从公交车中的反作用轮通过结构,隔离器和两脚架到孔径的传递。使用线性二次高斯(LQG)控制器执行可变形镜控制,而使用正位置反馈(PPF)控制器执行镜段控制。在所有情况下,波前误差都是主要的光学性能指标,是使用主镜的Zernikes计算得出的。使用控制的主要威慑因素是复杂性和稳定性不足。集成模型允许一起计算所有指标,以检查实现动态波前控制的潜在好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号