首页> 外文学位 >Parametric resonance based atomic force microscopy and mass-sensing in ambient and liquid environments.
【24h】

Parametric resonance based atomic force microscopy and mass-sensing in ambient and liquid environments.

机译:在环境和液体环境中基于参数共振的原子力显微镜和质量传感。

获取原文
获取原文并翻译 | 示例

摘要

Parametric resonance underpins the physics of swings, resonant surface waves, and particle traps. A parametrically excited resonator can respond in two different ways, namely, (i) Parametric Resonance and (ii) Parametric Amplification. In this work, we present theoretical studies and experimental data that characterize both regimes.;There is increasing interest in the parametric excitation of a microcantilever for Atomic Force Microscopy (AFM) and Mass-Sensing applications. These applications are investigated both theoretically and experimentally. Detailed numerical simulations of parametric resonance are performed to understand how a microcantilever responds to tip-sample separation and tip-sample interaction. Simulations are performed to compare a parametrically resonant microcantilever with Q-controlled and conventionally resonated microcantilevers. We find three key advantages for AFM applications: (a) the reduction of ringing effects near feature edges that occur for high-Q microcantilevers; (b) an increase in the scanning speed while maintaining a low tip-sample interaction force while imaging; and (c) an enhanced sensitivity to long-range magnetic and electrostatic force gradients acting between the tip and the sample.;The parametric experiments were implemented using an electronic feedback circuit to self-excite a microcantilever with a signal proportional to the microcantilever's displacement. By adjusting the gain of a feedback amplifier, both parametric resonance and parametric amplification regimes can be easily accessed. Using a laser beam bounce technique to monitor the cantilever's displacement, a cubic non-linearity in the output of the position-sensitive photodiode has been identified. This non-linearity serves to limit the amplitude of the cantilever's oscillation in the parametric amplification regime.;The experiments were performed with an aim to clearly identify the advantages and disadvantages that parametric resonance offers for scanning probe applications. The electronic feedback technique allows an enhancement of the microcantilever's effective quality-factor (Q-factor) by two orders of magnitude under ambient conditions. This simple observation extends the mass sensing capabilities of a conventional AFM microcantilever into the sub-picogram range. Experiments designed to parametrically oscillate a microcantilever in water using electronic feedback also show an increase in the microcantilever's effective Q-factor by two orders of magnitude.
机译:参数共振为摆动,共振表面波和粒子阱的物理特性提供了基础。参数激励谐振器可以两种不同方式响应,即(i)参数谐振和(ii)参数放大。在这项工作中,我们提供了表征这两种机制的理论研究和实验数据。人们对用于原子力显微镜(AFM)和质量传感应用的微悬臂梁的参数激发越来越感兴趣。这些应用已在理论和实验上进行了研究。进行参数共振的详细数值模拟,以了解微悬臂梁如何响应尖端样品分离和尖端样品相互作用。进行仿真以将参数共振微悬臂与Q控制的和常规共振的微悬臂进行比较。我们发现了AFM应用的三个主要优势:(a)减少高Q微悬臂梁出现在特征边缘附近的振铃效应; (b)在成像时保持较低的针尖样本相互作用力的同时提高扫描速度; (c)增强了对尖端和样品之间作用的远距离电磁力和静电力梯度的敏感性。使用电子反馈电路进行参数化实验,以使微悬臂梁自激,其信号与微悬臂梁的位移成比例。通过调整反馈放大器的增益,可以轻松访问参量谐振和参量放大方案。使用激光反射技术监测悬臂的位移,已经确定了位置敏感光电二极管输出中的立方非线性。这种非线性度限制了参数放大方案中悬臂振荡的幅度。进行实验的目的是清楚地确定参数共振为扫描探针应用提供的优缺点。电子反馈技术可以在环境条件下将微悬臂梁的有效质量因子(Q因子)提高两个数量级。这种简单的观察将常规AFM微悬臂梁的质量感测能力扩展到了亚皮克范围内。设计用于使用电子反馈在水中以参数方式振荡微悬臂梁的实验还表明,微悬臂梁的有效Q因子增加了两个数量级。

著录项

  • 作者

    Prakash, Gyan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.;Physics Condensed Matter.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号