首页> 外文学位 >Physical modeling of silicon carbide power junction field effect transistor and model levels for semiconductor devices.
【24h】

Physical modeling of silicon carbide power junction field effect transistor and model levels for semiconductor devices.

机译:碳化硅功率结场效应晶体管的物理模型和半导体器件的模型级别。

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide (SiC) is considered the most promising material for next-generation power semiconductor devices due to its superior physical properties in terms of switching speed, breakdown voltage, maximum operating temperature, high thermal conductivity, high current density, and extremely stable chemical characteristics. Currently, 1200V/20A SiC junction field effect transistor (JFET) is at the verge of being commercialized by various companies, including SemiSouth Laboratories, Inc. The fabrication of other devices, like high voltage SiC MOSFET, is progressing. Providing circuit simulator models for these revolutionary devices is of great importance to facilitate their adoption by circuit engineers.;Given the fact that the power JFET is a simple device and provides a good starting point for manufacturing and modeling of power devices made out of SiC, this dissertation works in two related areas of power semiconductor device modeling. One is development of physics-based models for the power JFET, currently the most mature active SiC power device. The other is definition of a hierarchy of model levels and the development of high-accuracy behavioral models and of methods to extract the parameters used by these models.;Regarding the operating conditions of SiC devices, it turns out that, in order to fully exploit the superior material characteristics of the material, SiC devices operate with high electric field in the channel region during conduction. Therefore, electric field dependant mobility plays a very important role in determining the characteristics of SiC power semiconductor devices. In the first research area, as part of this research effort, two distinct models are proposed for SiC JFETs. The first model is a piecewise model with a separate set of equations to describe operation in the linear and saturation regions. An important contribution of the proposed work is a method to determine the boundary region between linear and saturation region, which is essential for the development of a usable circuit simulator model. The second model uses a single set of equations to describe operation in both the linear and saturation region. This provides a more robust model implementation and a more physical description of the saturation phenomenon.;For the second research area, a hierarchy of model levels is defined, starting from simple behavioral models and moving on to more complex physics-based models all the way to finite-element models. The concept is that, for modeling and simulation, models with various simulation accuracy and simulation running time are needed to perform simulation studies at different levels of detail. Six model levels are defined: the first three levels are behavioral and the remaining three are physics-based. Each model level increases in complexity and provides details not available in models at lower levels. Higher level models have higher simulation accuracy, but simulation cost is higher. The JFET model described in the first research area is an example of a physics-based model. This research effort in the second research area concentrates on behavioral models, both averaged and switching, which are appropriate for system-level studies. Overall, three levels of behavioral models have been developed. They are level-0, an averaged switch model that models both conduction and switching losses, level-1A, a behavioral switch model comprising a voltage-controlled resistor V-switch and an ideal diode, level-1B, a behavioral switch model comprising a voltage-controlled resistor V-switch and a diode with reverse recovery current. These behavioral models are developed in Spice and in the Virtual Test Bed (VTB), a system simulation software developed at the University of South Carolina.
机译:由于碳化硅(SiC)在开关速度,击穿电压,最高工作温度,高导热性,高电流密度和极其稳定的化学特性方面均具有优越的物理特性,因此被认为是下一代功率半导体器件最有前途的材料。当前,1200V / 20A SiC结型场效应晶体管(JFET)即将被包括SemiSouth Laboratories,Inc.在内的多家公司商业化。其他器件的制造,例如高压SiC MOSFET,也在不断发展。为这些革命性的器件提供电路仿真器模型对于促进电路工程师的采用非常重要。鉴于功率JFET是一个简单的器件,并为制造和建模SiC制成的功率器件提供了良好的起点,本文的工作涉及功率半导体器件建模的两个相关领域。一种是为功率JFET(目前最成熟的有源SiC功率器件)开发基于物理学的模型。另一个是定义模型级别的层次,开发高精度行为模型以及提取这些模型所使用的参数的方法。;关于SiC器件的工作条件,事实证明,为了充分利用SiC器件具有优异的材料特性,因此在传导过程中,SiC器件会在沟道区中以高电场工作。因此,取决于电场的迁移率在确定SiC功率半导体器件的特性中起着非常重要的作用。在第一个研究领域中,作为这项研究工作的一部分,针对SiC JFET提出了两种不同的模型。第一个模型是一个分段模型,具有一组单独的方程式,用于描述线性和饱和区域中的操作。这项工作的重要贡献是确定线性和饱和区域之间边界区域的方法,这对于开发可用的电路模拟器模型至关重要。第二个模型使用一组方程式描述线性区域和饱和区域中的操作。这提供了更健壮的模型实现和对饱和现象的更物理描述。;对于第二个研究领域,定义了模型级别的层次结构,从简单的行为模型开始,一直到更复杂的基于物理的模型到有限元模型。其概念是,对于建模和仿真,需要具有各种仿真精度和仿真运行时间的模型来执行不同细节级别的仿真研究。定义了六个模型级别:前三个模型是行为模型,其余三个模型是基于物理的。每个模型级别的复杂性都会增加,并提供较低级别的模型无法提供的详细信息。较高级别的模型具有较高的仿真精度,但是仿真成本较高。在第一个研究领域中描述的JFET模型是基于物理模型的示例。在第二个研究领域中的这项研究工作集中于平均和转换的行为模型,这些模型适用于系统级研究。总体而言,已经开发了三个级别的行为模型。它们是0级,模拟传导和开关损耗的平均开关模型,1A级,包括压控电阻器V开关和理想二极管的行为开关模型,1B级,包括1个电阻的行为开关模型。压控电阻器V开关和具有反向恢复电流的二极管。这些行为模型是在Spice和虚拟测试台(VTB)中开发的,虚拟测试台是由南卡罗来纳大学开发的系统仿真软件。

著录项

  • 作者

    Chen, Zhiyang.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号