首页> 外文学位 >Control of aperiodic walking and the energetic effects of parallel joint compliance of planar bipedal robots.
【24h】

Control of aperiodic walking and the energetic effects of parallel joint compliance of planar bipedal robots.

机译:平面双足机器人的非周期性行走控制和平行关节顺应性的能量效应。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, two problems related to bipedal robot walking are presented. The first problem is the influence of parallel knee joint compliance on the average power cost of walking in an underactuated planar bipedal robot, ERNIE. The second problem is the design of walking controllers that induce aperiodic bipedal robot walking.; It has been found that compliance plays important roles in walking and running in animals. Compliance has been used in robotic bipedal machines to improve energetic efficiency or reduce the peak power demand on the robot's actuators. This dissertation presents numerical and experimental studies of the influence of parallel knee joint compliance on the average power cost of walking in an underactuated planar bipedal robot, ERNIE. The use of parallel compliance does not increase the control design complexity, as would the addition of series compliance. Four scenarios were studied: one without springs and three with springs of different stiffnesses and preloads. Optimal gaits in terms of average power cost for various speeds were designed for each scenario. It was found that for low-speed walking, soft springs are helpful to reduce power cost, while stiffer springs increase power cost. For high-speed walking, it was found that both soft and stiff springs reduce the average power cost of walking, but stiffer springs reduce the cost more than do softer springs.; The second problem addressed in this dissertation is aperiodic walking controller design. Along with the energetic efficiency of bipedal walking, the ability to walk stably in varying environments or with different tasks, such as stepping over stones, is another major concern in bipedal walking. In these scenarios, the walking is not periodic. This dissertation presents a new definition of stable walking that is not necessarily periodic for a class of biped robots. The inspiration for the definition is the commonly-held notion of stable walking: the biped does not fall. To make the definition useful, an algorithm is given to verify if a given controller induces stable walking. Also given is a framework to synthesize controllers that induce stable walking. The results are illustrated with numerical simulation and experiments.; This dissertation also presents details of a modeling procedure for the experimental bipedal robot, ERNIE, and explores the possibility to apply iterative learning control to bipedal walking.
机译:本文提出了与双足机器人行走有关的两个问题。第一个问题是膝关节平行顺应性对在欠驱动平面双足机器人ERNIE中行走的平均动力成本的影响。第二个问题是引起非周期性双足机器人行走的行走控制器的设计。已经发现,顺从性在动物的行走和奔跑中起着重要的作用。合规性已被用于机器人双足机器人中,以提高能量效率或减少机器人执行器的峰值功率需求。本文提出了数值模拟和实验研究,研究了膝关节平行屈膝对在欠驱动平面双足机器人ERNIE中行走的平均动力成本的影响。并行顺从性的使用不会增加控件设计的复杂性,串联顺应性的增加也不会增加控件的设计复杂性。研究了四种情况:一种不带弹簧,三种不带刚度和预紧力的弹簧。针对每种情况设计了针对各种速度的平均功率成本方面的最佳步态。已经发现,对于低速行走,软弹簧有助于降低动力成本,而较硬的弹簧会增加动力成本。对于高速行走,人们发现软弹簧和硬弹簧都降低了行走的平均动力成本,但是较硬的弹簧比软弹簧降低的成本更大。本文所要解决的第二个问题是非周期性行走控制器的设计。除了两足动物步行的能量效率外,在两足动物步行中的另一个主要问题是在不同的环境或完成不同任务(例如踩石头)时稳定行走的能力。在这些情况下,步行不是周期性的。本文提出了一种稳定行走的新定义,对于一类两足动物机器人,它不一定是周期性的。该定义的灵感来自于稳定步行的普遍观念:两足动物不会跌倒。为了使定义有用,给出了一种算法来验证给定的控制器是否引起稳定的行走。还给出了一个框架,用于合成诱导稳定行走的控制器。结果通过数值模拟和实验说明。本文还给出了实验性双足机器人ERNIE建模过程的详细信息,并探讨了将迭代学习控制应用于双足步行的可能性。

著录项

  • 作者

    Yang, Tao.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号