首页> 外文学位 >Allosteric regulation of mammalian fructose-1,6-bisphosphatase.
【24h】

Allosteric regulation of mammalian fructose-1,6-bisphosphatase.

机译:哺乳动物果糖-1,6-双磷酸酶的变构调节。

获取原文
获取原文并翻译 | 示例

摘要

Fructose-1, 6-bisphosphate (D-fructose-1, 6-bisphosphate 1-phosphohydrolase; EC 3. 1. 3; FBPase) is an essential regulatory enzyme in gluconeogenesis and has long been considered as a drug target towards type II diabete. In mammalian, the activity of FBPase is regulated by AMP and fructose 2,6-bisphosphate (Fru-2,6-P 2). AMP is an allosteric inhibitor that binds to FBPase with positive coopertivity, and Fru-2,6-P2 is an active site inhibitor which is up-regulated by hormone. Despite the 30 Å distance between their binding sites, both of AMP and Fru-2,6-P2 transform FBPase from active R-state to inactive T-state. Large conformational rearrangements are coupled to the R- to T-state transition: subunit pairs within tetrameric FBPase rotate over ten degree relative to each other and an essential catalytic loop (residue 50-72) is forced away from active site. Mutagenesis, kinetics, crystallography and molecular dynamics simulations are combined here to investigate structure-function relationship of FBPase. Tetramer is a functional unit of FBPase; disturbing the tetrameric packing of FBPase leads to loss of AMP cooperativity. A hydrophobic cavity at the center of FBPase tetramer is populated by well-defined clathrate-like waters. The cavity together with waters in it is shown to be thermodynamic determinant for quaternary states of FBPase. Kinetics and crystallographic studies indicate a negative correlation between subunit pair rotation and relative activity of FBPase. Filling the cavity by point mutations selectively hinges subunit pair rotation induced by Fru-2,6-P2 and largely reduce the synergism between AMP and Fru-2,6-P2. Mutation that stops subunit pair rotations causes complete loss of AMP inhibition but retains Fru-2,6-P2 inhibition; whereas mutation promotes the subunit pair rotation turn off cooperative binding of AMP as well as AMP/Fru-2,6-P 2 synergism. MD simulation together with crystal structures of intermediate states of FBPase reveals correlation between subunit pair rotation and status of loop 50-72. Moreover, knowledge of allosteric regulation of porcine liver FBPase and FBPase from Escherichia coli was used predict the regulatory properties of all Type-I FBPases, for which sequence information is available. Subsequent expression of FBPase from a bacterial organism, predicted to have the regulatory properties of a eukaryotic FBPase, proved correct and established a basis for the evolution of regulatory properties for all Type-I FBPases.
机译:1,6-二磷酸果糖(D-果糖-1,6-二磷酸1-磷酸水解酶; EC 3..1.3; FBPase)是糖异生中必不可少的调节酶,长期以来一直被认为是II型糖尿病的药物靶标。在哺乳动物中,FBPase的活性受AMP和果糖2,6-双磷酸酯(Fru-2,6-P 2)调节。 AMP是一种变构抑制剂,与FBPase的结合具有正合作性,而Fru-2,6-P2是一种活性位点抑制剂,其被激素上调。尽管它们的结合位点之间有30Å的距离,但AMP和Fru-2,6-P2都将FBPase从活性R状态转变为非活性T状态。大的构象重排与R态到T态转变相关:四聚体FBPase中的亚基对彼此旋转超过10度,并且一个基本的催化环(残基50-72)被迫离开活性位点。诱变,动力学,晶体学和分子动力学模拟在这里相结合,以研究FBPase的结构功能关系。四聚体是FBPase的功能单元;干扰FBPase的四聚体堆积会导致AMP协同作用的丧失。 FBPase四聚体中心的疏水腔中充满了明确定义的笼状水。腔体及其中的水被证明是FBPase四元态的热力学决定因素。动力学和晶体学研究表明亚基对旋转和FBPase相对活性之间呈负相关。通过点突变填充腔体选择性地铰接由Fru-2,6-P2诱导的亚基对旋转,并大大降低AMP和Fru-2,6-P2之间的协同作用。终止亚基对旋转的突变会导致AMP抑制的完全丧失,但保留Fru-2,6-P2抑制。而突变会促进亚基对旋转,从而关闭AMP的协同结合以及AMP / Fru-2,6-P 2协同作用。 MD模拟以及FBPase中间状态的晶体结构揭示了亚基对旋转与环50-72状态之间的相关性。此外,利用对猪肝FBPase和来自大肠杆菌的FBPase的变构调节的知识可预测所有I型FBPase的调节特性,可获得序列信息。来自细菌生物体的FBPase随后的表达,被预测具有真核FBPase的调控特性,被证明是正确的,并为所有I型FBPase调控特性的发展奠定了基础。

著录项

  • 作者

    Gao, Yang.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号