首页> 外文学位 >Particle acceleration at shocks in the inner heliosphere.
【24h】

Particle acceleration at shocks in the inner heliosphere.

机译:内层日球在撞击时的粒子加速度。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations.
机译:本文通过扩散激波加速机制对激波中的粒子加速度进行了研究。提出了在准平行和准垂直冲击下的粒子加速结果,以解决太阳风热芯中是否存在足够的粒子(建模为麦克斯韦分布或κ分布)以解决观测到的加速光谱的问题。 。将加速理论上游分布的结果与1 AU下的高能观测值进行比较。结果表明,太阳风热芯中的粒子分布足以解释激波下游的加速粒子光谱,尽管在某些情况下,下游分布的形状并不完全遵循扩散激波加速度的理论,这表明可能还会增加这些情况使工作震惊。结果表明,本文研究的准平行和准垂直冲击的三分之一到一半的理论和实测光谱指数之间具有很好的一致性。在围绕太阳最大值的高太阳活动期间发生的日冕物质抛射每天会产生超过3-8次电击的电击。在日照最小期间,通常可以基于单个独立冲击来理解冲击时的扩散冲击加速度,并且没有其他冲击必定会影响扩散冲击加速度机制。从这个意义上讲,日照最小期间的扩散冲击加速度可被视为马尔可夫模型。相比之下,在高太阳活动时期(例如,太阳最大值),粒子的扩散冲击加速出现频繁,间隔很小的冲击,其中包括在前后冲击时粒子加速的影响。因此,不能基于扩散冲击加速度作为单个,独立的冲击来模拟太阳最大值处的粒子的扩散冲击加速度,并且该过程本质上是非马尔可夫模型。多次冲击模型的建立部分基于盒模型(Protheroe和Stanev,1998; Moraal和Axford,1983; Ball和Kirk,1992; Drury等人,1999),该模型在多次冲击时会加速粒子并使粒子之间的压缩。通过两种方法进行电击。第一种减压方法是基于Melrose和Pope(1993)所使用的方法,该方法在冲击之间绝热地压缩颗粒。第二种方法解决了宇宙射线的传输方程,并在冲击之间绝热地进行压缩,包括通过对流和扩散使粒子损失。传输方法考虑到了时间上的变化,因此可以使冲击的频率分布更具代表性。减压和损失的传输方法用于在三十天的时间段内七十三次电击时加速颗粒。与该模型在同一时间段内在1 AU进行的观察结果的比较令人鼓舞,因为该模型能够重现观察到的加速粒子的振幅,并部分地再现变异性。这项工作为开发更复杂的模型提供了基础,这些模型可以应用于一组观测结果。

著录项

  • 作者

    Parker, Linda Neergaard.;

  • 作者单位

    The University of Alabama in Huntsville.;

  • 授予单位 The University of Alabama in Huntsville.;
  • 学科 Physics General.;Physics Elementary Particles and High Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TS97-4;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号