首页> 外文学位 >Assessing the timing and magnitude of precipitation-induced seepage into tunnels bored through fractured rock.
【24h】

Assessing the timing and magnitude of precipitation-induced seepage into tunnels bored through fractured rock.

机译:评估降水引起的渗入穿过裂隙岩石的隧道的时间和大小。

获取原文
获取原文并翻译 | 示例

摘要

Seepage into tunnels bored through fractured rock is a common occurrence that can cause significant problems for the construction process, tunnel longevity, and the regional hydrogeology. Predictions of seepage using analytical solutions are often inaccurate due to the inherent assumptions and volumetric averaging of fractures. A conceptual model is first developed for this research by using the factors shown by previous studies to have control on net infiltration and seepage. An integrated hydrologic model, ParFlow is then used to investigate the control exhibited by these factors that include: climatic forcing; vegetation; soil type and depth; bedrock type; fracture spacing; and tunnel depth on the timing and magnitude of seepage into tunnels. A fracture continuum is generated for bedrock using FRACK, which maps discrete fracture networks to a finite difference grid with heterogeneous, anisotropic permeability fields. Simulations are run using hourly meteorological forcing over a two-year period. Surface and subsurface properties are varied individually to investigate the change in seepage response. Results show that fracture spacing, bedrock type, and overburden are particularly important pieces in obtaining reliable seepage estimates. Higher fracture spacing causes higher total seepage at a more constant rate than a lower spacing that exhibits a much larger range of fluctuation in seepage volumes. More permeable and porous bedrock actually increases lag times and seepage amounts that are observed to be relatively constant over time. Thicker and less conductive soils both increase lag times and reduce seepage magnitude.
机译:贯穿裂隙性岩石的隧道渗水是一种普遍现象,可能对施工过程,隧道寿命和区域水文地质造成严重问题。由于固有的假设和裂缝的体积平均,使用分析解决方案对渗流的预测通常是不准确的。首先使用先前研究显示的因素为该研究开发概念模型,以控制净渗透和渗漏。然后使用综合水文模型ParFlow来调查这些因素所表现出的控制力,这些因素包括:气候强迫;植被;土壤类型和深度;基岩类型断裂间距和隧道深度对渗入隧道的时间和大小的影响。使用FRACK为基岩生成一个裂缝连续体,该裂缝连续体将离散裂缝网络映射到具有非均质各向异性渗透率场的有限差分网格。在两年期间,使用每小时的气象强迫进行模拟。分别改变表面和地下性能,以研究渗流响应的变化。结果表明,裂缝间距,基岩类型和覆盖层是获得可靠渗流估算值的特别重要的因素。与较低的间距相比,较高的裂缝间距导致较高的总渗漏速率,而较低的间距则显示出更大的渗漏量波动范围。实际上,渗透性和多孔性更高的基岩实际上会增加滞后时间和渗透量,这些滞后时间和渗透量随时间变化相对恒定。较厚且导电性较差的土壤都增加了滞后时间并降低了渗漏量。

著录项

  • 作者

    Sweetenham, Michael George.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Hydrology.
  • 学位 M.S.
  • 年度 2013
  • 页码 67 p.
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号