首页> 外文学位 >Epitaxial Development of Advanced Group IV Materials and High Performance Optical Devices for Applications in Silicon-photonics and Photovoltaics.
【24h】

Epitaxial Development of Advanced Group IV Materials and High Performance Optical Devices for Applications in Silicon-photonics and Photovoltaics.

机译:先进的IV类材料和高性能光学器件的外延开发,用于硅光子学和光伏技术。

获取原文
获取原文并翻译 | 示例

摘要

Group IV alloy films exhibit the ability to tune both band structure and lattice parameters and have recently attracted attention for their potential applications in Si-photonics and photovoltaics. In this work, several new approaches to produce these alloys directly on Si(100) and Ge(100) wafers are developed.;For photovoltaics, use of Ge-buffered Si(100) wafers as a low cost platform for epitaxy of In1-xGaxAs layers was explored. The results indicate that this approach has promise for transitioning from bulk Ge platforms to virtual substrates for a significant cost reduction.;The electrical and optical properties of Ge and Ge1-ySn y layers produced using several different techniques were explored via fabrication of high performance heterostructure photodiodes. First, a new CVD approach to Ge-like materials was developed in which germanium is alloyed with very small amounts of tin. These alloys exhibited no significant difference in their structural properties or band gap compared to pure Ge, however superior photo response and reduced dark currents were observed from fabricated devices relative to pure Ge on Si reference diodes. Additionally, pure Ge/Si(100) photodiodes were fabricated using layers grown via reactions of Ge4H 10 on Si(100) and found to exhibit low dark current densities with high collection efficiencies.;Ge1-x-ySixSny materials represent the newest member of group IV alloy family. The ability to decouple the lattice constant and the band gap in this system has led to strong interest both for strain/confinement layers in quantum well structures, and as the possible "missing" 1 eV junction in multijunction photovoltaics. Recent progress in this field has allowed for the first time growth, fabrication and measurement of novel photodiodes based on Ge1-x-ySixSn y. This work presents the material, electrical and optical properties of Ge1-x-ySixSny layers and photodiodes grown directly on Ge and Si wafers using two different synthetic approaches. A series of photodiodes containing Sn concentrations from 1-5%, all lattice matched to Ge, was fabricated. The devices exhibited low dark current densities with high collection efficiencies as required for photovoltaics. By measuring the photoresponse, tunable band gaps ranging from 0.85 eV to 1.02 eV were observed.
机译:IV族合金膜具有调节能带结构和晶格参数的能力,并且最近因其在硅光子学和光伏中的潜在应用而受到关注。在这项工作中,开发了几种直接在Si(100)和Ge(100)晶片上直接生产这些合金的新方法。对于光伏发电,使用Ge缓冲的Si(100)晶片作为In1-外延的低成本平台探索了xGaxAs层。结果表明,该方法有望从大量的Ge平台过渡到虚拟基板,从而显着降低成本。;通过高性能异质结构的制造,探索了使用几种不同技术生产的Ge和Ge1-ySn y层的电学和光学性质光电二极管。首先,开发了一种新的CVD方法来处理类Ge材料,其中锗与少量锡合金化。与纯Ge相比,这些合金的结构性能或带隙没有显着差异,但是与Si参考二极管上的纯Ge相比,从制造的器件中观察到优异的光响应和降低的暗电流。此外,使用通过Ge4H 10在Si(100)上反应生长的层制造了纯Ge / Si(100)光电二极管,发现它们具有低暗电流密度和高收集效率。; Ge1-x-ySixSny材料代表了最新的材料。 IV组合金家族。在该系统中解耦晶格常数和带隙的能力引起了对量子阱结构中的应变/约束层以及多结光伏中可能的“缺失” 1 eV结的强烈兴趣。该领域的最新进展首次实现了基于Ge1-x-ySixSn y的新型光电二极管的生长,制造和测量。这项工作介绍了使用两种不同的合成方法直接在Ge和Si晶片上生长的Ge1-x-ySixSny层和光电二极管的材料,电学和光学特性。制作了一系列的光电二极管,这些二极管的Sn浓度为1-5%,所有晶格都与Ge匹配。这些器件表现出低的暗电流密度,并具有光伏所需的高收集效率。通过测量光响应,观察到了0.85 eV至1.02 eV的可调带隙。

著录项

  • 作者

    Beeler, Richard.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Chemistry Inorganic.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号