首页> 外文学位 >Finite element simulations of ceramic powder compaction and sintering in the making of a micro heat exchanger.
【24h】

Finite element simulations of ceramic powder compaction and sintering in the making of a micro heat exchanger.

机译:微型热交换器制造过程中陶瓷粉末压实和烧结的有限元模拟。

获取原文
获取原文并翻译 | 示例

摘要

One major problem in processing ceramics using conventional powder-based compaction and sintering technique is the non-uniform relative density distribution and the residual stresses induced during these processes. The non uniformities may cause high differential sintering rate, introducing cracks and shape distortion in the sintered product. The capability in predicting the relative density distribution and residual stresses will therefore enhance our ability to design and fabricate ceramic components with internal cavities. In this thesis, finite element models for compaction process are developed based on theory of plasticity using the modified Drucker-Prager/cap model in soil mechanics and a recent hyperbolic cap model. A finite element model for sintering process based on viscoplasticity constitutive law is also presented. The models allow simulations to be performed before experiments to select feasible processes. The results from finite element simulation are consistent with findings of other researchers and in agreement with our experimental observations in making various features in our meso-scale heat-exchanger. The compaction models indicate that severe local shear yielding during unloading may have caused micro-cracks since the sites that yielded in shear during top punch removal are coincident with the sites where micro-cracks originate. The sintering model implies that sintered products are more uniform in their final relative density and residual stress distribution regardless of their geometry and their base states as inherited from the two different compaction models. In addition, simulations reveal that local effects such as differences in relative density, residual stresses and geometry do not seem to significantly affect the final grain size and sintering time needed to densify a ceramic compact. An in-depth study of shear yielding and its relationship with compact cracking is needed to improve the current compaction model. To fine-tune the sintering model, sinter forging needs to be conducted to obtain experimental material parameters.
机译:使用常规的基于粉末的压实和烧结技术加工陶瓷的一个主要问题是相对密度分布不​​均匀以及在这些过程中产生的残余应力。不均匀性可能导致高的差异烧结速率,从而在烧结产品中产生裂纹和形状变形。因此,预测相对密度分布和残余应力的能力将增强我们设计和制造带有内腔的陶瓷组件的能力。本文基于塑性理论,利用改进的土工力学Drucker-Prager / cap模型和最新的双曲线帽模型,建立了压实过程的有限元模型。提出了基于粘塑性本构关系的烧结过程有限元模型。该模型允许在进行实验以选择可行过程之前进行仿真。有限元模拟的结果与其他研究人员的发现是一致的,并且与我们在中尺度热交换器中具有各种特性的实验观察结果一致。压实模型表明,在卸载过程中严重的局部剪切屈服可能已引起微裂纹,因为在顶部冲头移除过程中在剪切过程中产生的位置与产生微裂纹的位置一致。烧结模型意味着烧结产品的最终相对密度和残余应力分布更加均匀,而与从两个不同压实模型继承的几何形状和基态无关。此外,模拟表明,局部效应(例如相对密度,残余应力和几何形状的差异)似乎并未显着影响致密陶瓷压坯所需的最终晶粒尺寸和烧结时间。为了改善当前的压实模型,需要对剪切屈服及其与压实裂缝的关系进行深入研究。为了微调烧结模型,需要进行烧结锻造以获得实验材料参数。

著录项

  • 作者

    Kok, Chee Kuang.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号