首页> 外文学位 >Investigation of Gadolinium Based Pyrochlores for their use in High-Temperature Nano-Derived Hydrogen Gas Sensors.
【24h】

Investigation of Gadolinium Based Pyrochlores for their use in High-Temperature Nano-Derived Hydrogen Gas Sensors.

机译:of基烧绿石在高温纳米衍生氢气传感器中的应用研究。

获取原文
获取原文并翻译 | 示例

摘要

There is a large need for microsensors that have a quick response, can be implemented cheaply and operate at low power. These sensors must also be sensitive to specific chemistries and have little to no cross-sensitivity to other stimuli in the environment. Previous researchers have shown that the incorporation of nanomaterials as the selective material resulted in very high sensitivity. Unfortunately, these nanomaterials are unstable at high temperatures due to sintering and coarsening. Therefore, within this work, new hydrogen selective nanomaterials will be investigated for these micro sensors that will be highly selective to hydrogen and be stable within the proposed harsh environment. In addition these nanomaterials where incorporated into chemi-resistive microsensors architectures. In order to fabricate these microsensors, the sensor requires the deposition of the active materials onto metal interconnects. This process is usually completed by physical vapor deposition processes, but results in unstable nanomaterials with low crystalinity. Current work focuses on the deposition of refractory nanomaterials through a lost-mold method patterned by lithography. It will also detail methods for stabilizing the microstructure of nano-composite H2 selective materials for high-temperature sensing applications using refractory, perovskite- and pyrochlore-zirconate electrolyte nanoparticles. This work investigated the effects of colloidal stabilization, suspension characteristics, photoresist composition, photoresist-suspension interactions, micro-mold geometry, and thermal processing. The differences between sensing mechanisms in material systems ranging from traditional semiconductors to mixed electronic conductors will also be explored. The macro and micro configurations of the H2 sensors are tested and compared for sensitivity, response time, stability, and recovery time. The impact of this work will foster the inexpensive implementation of sensor arrays to a host of industrial applications where efficient gas sensing is required.
机译:迫切需要具有快速响应,可以廉价实现并以低功率运行的微传感器。这些传感器还必须对特定的化学反应敏感,并且对环境中的其他刺激几乎没有交叉敏感性。先前的研究人员表明,将纳米材料作为选择性材料并入会导致很高的灵敏度。不幸的是,由于烧结和粗化,这些纳米材料在高温下不稳定。因此,在这项工作中,将针对这些微传感器研究新的氢选择性纳米材料,这些材料将对氢具有高度选择性,并在建议的恶劣环境中保持稳定。另外,将这些纳米材料结合到耐化学腐蚀的微传感器结构中。为了制造这些微传感器,传感器需要将活性材料沉积到金属互连上。该过程通常通过物理气相沉积过程完成,但是导致具有低结晶度的不稳定纳米材料。当前的工作集中在通过光刻法构图的失模方法沉积耐火纳米材料。它还将详细介绍使用难熔,钙钛矿和烧绿石-锆酸盐电解质纳米颗粒稳定用于高温传感应用的纳米复合H2选择性材料的微观结构的方法。这项工作研究了胶体稳定作用,悬浮特性,光致抗蚀剂组成,光致抗蚀剂与悬浮液的相互作用,微模具几何形状以及热处理的影响。还将探讨从传统半导体到混合电子导体的材料系统中传感机制之间的差异。测试H2传感器的宏观和微观配置,并比较其灵敏度,响应时间,稳定性和恢复时间。这项工作的影响将有助于廉价地将传感器阵列应用到需要高效气体感测的众多工业应用中。

著录项

  • 作者

    Wildfire, Christina.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号