首页> 外文学位 >Experimental and numerical evaluation of concrete spalling during extreme thermal loading.
【24h】

Experimental and numerical evaluation of concrete spalling during extreme thermal loading.

机译:极端热荷载作用下混凝土剥落的实验和数值评估。

获取原文
获取原文并翻译 | 示例

摘要

To better understand how concrete behaves under fire conditions, an experimental program coupled with numerical modeling (using theories of heat and mass transfer) is implemented to measure and predict pore pressures in concrete under extreme temperatures. In intense fire conditions, the low permeability of concrete inhibits internal flow of steam (generated by the heating) and thus causes an increase in pore pressure that may then lead to spalling. Spalling of concrete under thermal loading due to pore pressure buildup is highly dependent upon the intensity and duration of heat input. Therefore, pore pressures measured experimentally or predicted from heat and mass transfer numerical models produce varied results depending on the characteristics of thermal loading. Many individuals regard the ASTM E119 thermal loading profile as the standard for determining the durability of structural members in fire conditions, however, this standard may not represent the worst-case scenario for the structure.;In this study, pore pressure and temperature are experimentally measured in various concrete mixtures under extreme thermal loading conditions (more severe than those specified in ASTM E119). A numerical model is then implemented for each of the mixtures to predict pore pressure and temperature distributions over time. Because the numerical model accounts for mass transport, the ability of gases and liquids to migrate through concrete is first quantified through experimental measurement of gas and water permeability to generate input data for the numerical model. The behavior of concrete subjected to severe thermal loading conditions is then better understood through experimental measurement and numerical prediction of internal temperature and pressure data.
机译:为了更好地了解混凝土在火灾条件下的行为,实施了一个与数值模型(使用传热和传质理论)相结合的实验程序,以测量和预测极端温度下混凝土的孔隙压力。在强火条件下,混凝土的低渗透性会抑制蒸汽(由加热产生)的内部流动,从而导致孔隙压力增加,进而导致剥落。由于孔隙压力的增加,在热负荷下混凝土的剥落高度取决于热输入的强度和持续时间。因此,根据热负荷的特性,通过实验测量或根据传热和传质数值模型预测的孔隙压力会产生不同的结果。许多人将ASTM E119热负荷曲线作为确定火灾条件下结构构件耐久性的标准,但是,该标准可能并不代表结构的最坏情况。在极端热负荷条件下(比ASTM E119中规定的更为严格)在各种混凝土混合物中测得的值。然后对每种混合物实施数值模型,以预测随时间的孔隙压力和温度分布。因为数值模型考虑了质量传递,所以首先通过对气体和水的渗透性进行实验测量来量化气体和液体在混凝土中迁移的能力,以生成数值模型的输入数据。然后,通过实验测量以及内部温度和压力数据的数值预测,可以更好地理解承受严重热负荷条件的混凝土的性能。

著录项

  • 作者

    Yanko, William Andrew.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号