首页> 外文学位 >Path Integral Monte Carlo Simulations of Semiconductor Quantum Dots and Quantum Wires.
【24h】

Path Integral Monte Carlo Simulations of Semiconductor Quantum Dots and Quantum Wires.

机译:半导体量子点和量子线的路径积分蒙特卡罗模拟。

获取原文
获取原文并翻译 | 示例

摘要

The accurate simulation of many-body quantum systems is a challenge for computational physics. Quantum Monte Carlo methods are a class of algorithms that can be used to solve the many-body problem. I study many-body quantum systems with Path Integral Monte Carlo techniques in three related areas of semiconductor physics: (1) the role of correlation in exchange coupling of spins in double quantum dots, (2) the degree of correlation and hyperpolarizability in Stark shifts in InGaAs/GaAs dots, and (3) van der Waals interactions between 1-D metallic quantum wires at finite temperature.;The two-site model is one of the simplest quantum problems, yet the quantitative mapping from a three-dimensional model of a quantum double dot to an effective two-site model has many subtleties requiring careful treatment of exchange and correlation. I calculate exchange coupling of a pair of spins in a double dot from the permutations in a bosonic path integral, using Monte Carlo method. I also map this problem to a Hubbard model and find that exchange and correlation renormalizes the model parameters, dramatically decreasing the effective on-site repulsion at larger separations.;Next, I investigated the energy, dipole moment, polarizability and hyperpolarizability of excitonic system in InGaAs/GaAs quantum dots of different shapes and successfully give the photoluminescence spectra for different dots with electric fields in both the growth and transverse direction. I also showed that my method can deal with the higher-order hyperpolarizability, which is most relevant for fields directed in the lateral direction of large dots.;Finally, I show how van der Waals interactions between two metallic quantum wires change with respect to the distance between them. Comparing the results from quantum Monte Carlo and the random phase approximation, I find similar power law dependance. My results for the calculation in quasi-1D and exact 1D wires include the effect of temperature, which has not previously been studied.
机译:多体量子系统的精确仿真是计算物理学的一个挑战。量子蒙特卡洛方法是一类可用于解决多体问题的算法。我在半导体物理学的三个相关领域中使用路径积分蒙特卡洛技术研究了多体量子系统:(1)相关性在双量子点中自旋的交换耦合中的作用;(2)Stark位移中的相关程度和超极化性(3)在有限温度下一维金属量子线之间的范德华相互作用;两点模型是最简单的量子问题之一,但从三维模型的定量映射一个有效的两点模型的量子双点具有许多微妙之处,需要仔细对待交换和相关。我使用蒙特卡洛方法,根据玻色子路径积分中的排列,计算出双点中的一对自旋的交换耦合。我还将这个问题映射到Hubbard模型中,发现交换和相关使模型参数重新规范化,从而在较大的分离距离处显着降低了有效的现场排斥力;接着,我研究了激子系统中的能量,偶极矩,极化率和超极化率具有不同形状的InGaAs / GaAs量子点,并成功给出了在生长方向和横向均具有电场的不同点的光致发光光谱。我还展示了我的方法可以处理高阶超极化率,这与大点横向方向上的场最相关。;最后,我展示了两条金属量子线之间的范德华相互作用如何相对于他们之间的距离。比较量子蒙特卡罗法和随机相位近似法的结果,我发现相似的幂律依赖性。我在准1D导线和精确1D导线中进行计算的结果包括温度的影响,这以前没有研究过。

著录项

  • 作者

    Zhang, Lei.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Physics Quantum.;Physics Solid State.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号