首页> 外文学位 >Mission design applications in the Earth-Moon system: Transfer trajectories and stationkeeping.
【24h】

Mission design applications in the Earth-Moon system: Transfer trajectories and stationkeeping.

机译:月球系统中的任务设计应用程序:转移轨迹和站位保持。

获取原文
获取原文并翻译 | 示例

摘要

A renewed interest in the Moon over the last decade has created a need for robust mission design algorithms in the Earth-Moon system. Strategies for computing orbits within the context of the circular restricted three-body problem as well as higher-fidelity ephemeris models are adapted to fulfill a variety of mission objectives. To support future scientific and communications objectives, periodic and quasi-periodic orbits in the vicinity the collinear L1 and L2 libration points in the Earth-Moon system are discussed. Differential corrections algorithms are presented to compute the orbits and to transition them to the higher-fidelity ephemeris models. A control-point stationkeeping strategy is modified to maintain several L2 libration point orbits and preliminary stationkeeping costs are computed.;As a result of the discovery of water ice at the lunar poles, these regions have emerged as a focus of future manned mission design efforts. The use of the circular restricted three-body problem as a preliminary design tool for this problem is explored. Families of planar and out-of-plane free return trajectories are computed in the three-body model and are included as part of a four-phase bi-elliptic transfer to the lunar poles. A differential corrections scheme to compute multi-burn Earth-Moon transfers in a higher-fidelity ephemeris model is developed as well. This algorithm offers flexibility in the mission design process and is used (i) to reduce total maneuver costs in a baseline trajectory, and (ii) to explore innovative solutions. A long-term goal in this analysis is an improved understanding of the dynamical environment in this region of space.
机译:在过去的十年中,人们对月球的兴趣再次增强,因此需要在“月球”系统中使用可靠的任务设计算法。在圆形受限三体问题以及高保真星历模型的背景下,计算轨道的策略可以满足各种任务目标。为了支持未来的科学和通信目标,讨论了地球-月球系统中共线的L1和L2释放点附近的周期性和准周期性轨道。提出了差分校正算法以计算轨道并将其转换为高保真星历模型。修改了控制点测站策略,以维持多个L2解放点轨道,并计算了初步的测站成本。;由于在月球极点发现了水冰,这些区域已成为未来载人飞行任务设计工作的重点。探索了将圆形受限三体问题用作该问题的初步设计工具。在三体模型中计算了平面和平面外自由返回轨迹的族,并将其作为到月球极的四相双椭圆传递的一部分。还开发了一种差分校正方案,可以在高保真星历模型中计算多次燃烧的月球传输。该算法在任务设计过程中提供了灵活性,并且用于(i)降低基线轨迹的总机动成本,以及(ii)探索创新解决方案。该分析的长期目标是增进对空间区域动态环境的理解。

著录项

  • 作者

    Pavlak, Thomas A.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.A.A.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号