首页> 外文学位 >Robust nonlinear control design via convex optimization and its application to fault tolerant longitudinal control of vehicles.
【24h】

Robust nonlinear control design via convex optimization and its application to fault tolerant longitudinal control of vehicles.

机译:基于凸优化的鲁棒非线性控制设计及其在车辆纵向容错控制中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a new analysis and design method for robust nonlinear control in the framework of Dynamic Surface Control (DSC), and its extension to fault tolerant control (FTC). The results are shown to apply to a class of nonlinear systems and in particular to automated longitudinal vehicle control. FTC has recently received significant attention in the design of large-scale systems such as automated highway systems due to a growing demand for reliability and an increase in complexity. A systematic procedure is needed to realize the ultimate benefits of a fault tolerant control system, thus leading to several interesting questions in the area of nonlinear control.; Before developing a full FTC design method, it is necessary to develop an analysis and design procedure for nonlinear systems under a no-fault assumption. The method developed in this thesis is the DSC method, which is a “synthetic input” method, similar to the integrator backstepping method. The investigation of augmented closed loop error dynamics leads us to derive convex optimization problems for testing the stability and performance of nonlinear systems via DSC. It results in the development of a systematic method to choose appropriate gains and filter time constants for DSC and to analyze both the stability and tracking performance. We extend this rigorous analytical framework to derive a separation principle for nonlinear compensators which combine a nonlinear observer with DSC. The principle enables us to design the observer and DSC independently if full state information is not available or faults occur in the sensor measurements. Moreover, an initial condition set which guarantees quadratic stability for the regulation problem with input constraints, as well as a region of attraction, are estimated numerically within the framework of convex optimization.; As motivated by the automated highway application, a hierarchical hybrid architecture for the FTC system has been proposed to allow hierarchical building of complex systems from simple systems and modular integration of components. Moreover, using the fact that DSC is a passive fault tolerant approach in the sense that it gives robust stabilization and tracking in the presence of model uncertainties and even a specific class of faults, we develop a hybrid structure using a combination of the passive and active FTC approaches. This structure leads to a fault classification scheme as a switching logic between the two approaches. Furthermore, a nonlinear compensator and a trajectory reconfiguration scheme are used as an active FTC approach to minimize performance losses as well as to maintain quadratic stability in the face of either sensor or actuator faults. Finally, we apply the DSC and FTC design methods to the automated longitudinal control of vehicles.
机译:本文提出了一种在动态表面控制(DSC)框架下的鲁棒非线性控制分析与设计方法,并将其扩展到容错控制(FTC)。结果表明,该结果适用于一类非线性系统,尤其适用于自动纵向车辆控制。由于对可靠性的需求和复杂性的增加,FTC最近在大型系统的设计中受到了极大的关注,例如自动化高速公路系统。需要一种系统的程序来实现容错控制系统的最终利益,从而在非线性控制领域引起一些有趣的问题。在开发完整的FTC设计方法之前,有必要为无故障假设下的非线性系统开发分析和设计程序。本文开发的方法是DSC方法,它是一种“合成输入”方法,类似于积分器的反推方法。对增强的闭环误差动力学的研究使我们得出了凸优化问题,用于通过DSC测试非线性系统的稳定性和性能。结果导致开发了一种系统的方法,可以为DSC选择合适的增益和滤波器时间常数,并分析稳定性和跟踪性能。我们扩展了这个严格的分析框架,以导出将非线性观测器与DSC结合在一起的非线性补偿器的分离原理。如果没有完整的状态信息或传感器测量中出现故障,则该原理使我们能够独立设计观察器和DSC。此外,在凸优化的框架内以数值方式估计初始条件集,该初始条件集可确保具有输入约束的调节问题以及吸引区域的二次稳定性。由于自动化公路应用的推动,已经提出了用于FTC系统的分层混合体系结构,以允许从简单系统和组件的模块化集成中分层构建复杂的系统。此外,利用DSC是 passive 容错方法这一事实,即在存在模型不确定性甚至特定类型的故障的情况下,DSC可以提供鲁棒的稳定和跟踪功能,因此,我们使用被动和主动FTC方法的结合。这种结构导致故障分类方案作为两种方法之间的切换逻辑。此外,非线性补偿器和轨迹重配置方案被用作主动FTC方法,以最大程度地降低性能损失,并在面对传感器或执行器故障时保持二次稳定性。最后,我们将DSC和FTC设计方法应用于车辆的纵向自动控制。

著录项

  • 作者

    Song, Bongsob.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Automotive.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号