首页> 外文学位 >Modeling of PEM fuel cell systems including controls and reforming effects for hybrid automotive applications.
【24h】

Modeling of PEM fuel cell systems including controls and reforming effects for hybrid automotive applications.

机译:PEM燃料电池系统的建模,包括混合动力汽车应用的控制和重整效果。

获取原文
获取原文并翻译 | 示例

摘要

Due to the nature of fuel cell reactions, fuel cells have the potential of being more fuel efficient while generating fewer harmful emissions than conventional automotive power systems. Additionally, by hybridizing a fuel cell system with a battery, opportunities may exist for significantly improving overall performance.; This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator. Exergetic efficiencies associated with the three models are examined and sources of inefficiency are identified. Fuel cell stack efficiency is highest when operating at low current density. Air compressor power consumption and losses associated with reformer operation significantly lower the overall system efficiency and highlight the importance of low-level control of components within the system.; By incorporating the models developed in this study into the vehicle performance simulator, alternative fuel cell vehicle configurations can be explored using various driving cycles, component sizing, and control strategies to determine effects on overall vehicle performance and fuel economy. For a typical sport utility vehicle operating over the Federal Urban Driving Schedule and Federal Highway Driving Schedule driving cycles, the simulator is used to examine fuel economy in four cases: direct-hydrogen fuel cell vehicle, methanol reforming fuel cell vehicle, direct-hydrogen hybrid (fuel cell system/battery) vehicle, and methanol reforming hybrid vehicle. Results indicate the direct-hydrogen hybrid vehicle shows the strongest potential for high fuel economy.; Additionally, for the direct-hydrogen hybrid vehicle, simple supervisory control strategies for the fuel cell system and battery are used to examine component sizing and operational limits. Dominance filtering is employed to identify component sizing and operational limits that provide the potential for highest fuel economy. Results of this analysis can be used as a point of departure to develop more advanced supervisory and component-level control strategies. Using appropriate supervisory and component-level control strategies to improve total system performance is key to realizing the benefits of fuel cell system integration for automotive applications.
机译:由于燃料电池反应的性质,与传统的汽车动力系统相比,燃料电池具有更高的燃料效率,同时产生更少的有害排放物的潜力。另外,通过将燃料电池系统与电池混合,可能存在显着改善整体性能的机会。这项研究开发了独立的质子交换膜(PEM)燃料电池堆,包括助剂的直接氢燃料电池系统以及集成到车辆性能模拟器中的甲醇重整燃料电池系统的模型。检查了与这三个模型相关的有效效率,并确定了无效效率的来源。在低电流密度下运行时,燃料电池堆效率最高。空气压缩机的功率消耗和与重整器操作相关的损耗大大降低了整个系统的效率,并突出了对系统中组件进行低级控制的重要性。通过将本研究中开发的模型整合到车辆性能模拟器中,可以使用各种行驶周期,部件尺寸和控制策略来探索替代燃料电池车辆的配置,以确定对整体车辆性能和燃油经济性的影响。对于在联邦城市驾驶时间表联邦高速公路驾驶时间表驾驶周期内运行的典型运动型多功能车,该模拟器用于检查四种情况下的燃油经济性:直接氢燃料电池车辆,甲醇重整燃料电池车辆,直接氢混合动力(燃料电池系统/电池)车辆和甲醇重整混合动力车辆。结果表明,直接氢混合动力汽车显示出最高的燃油经济性潜力。此外,对于直接氢混合动力汽车,使用燃料电池系统和电池的简单监督控制策略来检查组件的尺寸和运行极限。优势过滤用于识别组件尺寸和运行限制,从而为实现最高燃油经济性提供了可能。此分析的结果可以用作开发更高级的监督和组件级控制策略的出发点。使用适当的监督和组件级控制策略来改善总体系统性能,对于实现燃料电池系统集成在汽车应用中的优势至关重要。

著录项

  • 作者

    Boettner, Daisie Dawson.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 248 p.
  • 总页数 248
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号