首页> 外文学位 >Optical storage in erbium-doped gallium nitride using focused ion beam nanofabrication.
【24h】

Optical storage in erbium-doped gallium nitride using focused ion beam nanofabrication.

机译:使用聚焦离子束纳米制造技术将光存储在掺b氮化镓中。

获取原文
获取原文并翻译 | 示例

摘要

In this research, we propose a concept for a high-density, page-oriented data storage using optical upconversion emission from erbium doped gallium nitride (GaN:Er). This alternative storage design is based on nonlinear optical process of rare earth (RE) doped in wide bandgap semiconductor host. Data is recorded with focused ion beam (FIB) write technology and retried as amplitude modulated signal by detecting the incoherent upconversion emission. Writing process with FIB could be implemented with either ion implantation or ion milling approach.; With ion implantation approach, Er ions were implanted by FIB into undoped GaN thin film grown on sapphire or silicone (Si) substrates. Thermal annealing process was applied next to activate the optical properties of implanted Er ions. Information stored as data bits consists of patterns of implanted locations as logic ‘1’ and unimplanted locations as logic ‘0’. The photon upconversion process in Er ions is utilized to read the stored information. This process makes use of infrared (IR) lasers (840 nm and 1 μm) to excite visible emission (522 and 546 nm). Patterns as small as 0.5 μm were implanted and read. Volumetric optical memory based on GaN:Er semiconductors could in theory approach storage capacity of 1012 bits/cm 3.; With ion milling approach, sub-micron patterns were micro-machined on MBE grown in-situ doped GaN:Er film on Si substrate. Data retrieval is accompanied by upconversion emission at 535 and 556 nm upon 1 μm IR laser stimulation. Regions where Er-doped GaN layer is completely removed (and do not emit) are defined as logic ‘0’, while regions that are not milled (and do emit) are defined as logic ‘1’. Data patterns with submicron bit size (or 100 Mbits/cm2 density) have been fabricated by FIB milling. Data written by this approach has a theoretical storage capacity approaching 10 Gbits/cm2.; Our implementation of this proposed optical storage architecture takes advantage of capabilities that is available in the Nanoelectronics Laboratory such as, non-optical recording technique with FIB implantation or milling, liquid alloy ion source fabrication, epitaxial growth of GaN films by molecular beam epitaxy, upconversion optical readout set-up, and visible to IR optical characterization.
机译:在这项研究中,我们提出了一种使用掺,氮化镓(GaN:Er)的光学上转换发射来进行高密度,面向页面的数据存储的概念。这种替代性存储设计基于宽带隙半导体主机中掺杂的稀土(RE)的非线性光学过程。通过聚焦离子束(FIB)写入技术记录数据,并通过检测非相干上变频发射将其重试为调幅信号。 FIB的写入过程可以通过离子注入或离子铣削方法来实现。通过离子注入方法,FIB将Er离子注入到在蓝宝石或硅(Si)衬底上生长的未掺杂GaN薄膜中。接下来应用热退火工艺以激活注入的Er离子的光学特性。存储为数据位的信息由植入位置的模式(逻辑“ 1”)和未植入位置的模式(逻辑“ 0”)组成。 Er离子中的光子上转换过程用于读取存储的信息。该过程利用红外(IR)激光(840 nm和1μm)激发可见光(522和546 nm)。植入并读取小至0.5μm的图案。在理论上,基于GaN:Er半导体的体积光学存储器的存储容量可以达到10 12 位/ cm 3 。使用离子铣削方法,在MBE生长的Si衬底上原位掺杂GaN:Er膜上对亚微米图案进行了微加工。数据检索伴随1μm红外激光刺激下在535和556 nm处的上转换发射。完全去除(且不发光)掺Er的GaN层的区域定义为逻辑“ 0”,而未铣削(不发光)的区域定义为逻辑“ 1”。通过FIB铣削加工出了具有亚微米比特大小(或100 Mbits / cm 2 密度)的数据模式。用这种方法写入的数据的理论存储容量接近10 Gbits / cm 2 。我们对提出的光学存储体系结构的实施利用了纳米电子实验室中可用的功能,例如具有FIB注入或铣削的非光学记录技术,液态合金离子源制造,通过分子束外延外延生长GaN膜,上转换光学读出装置,对红外光学特性可见。

著录项

  • 作者

    Lee, Boon Kwee.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号