首页> 外文学位 >Design of Medical Devices Involving Multi-disciplinary Processes and Based on Fundamental Physical Principles.
【24h】

Design of Medical Devices Involving Multi-disciplinary Processes and Based on Fundamental Physical Principles.

机译:基于基本物理原理的涉及多学科过程的医疗设备设计。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on the optimal design of medical devices through the use of numerical simulation and the utilization of first principles of the participating phenomena. Through three broadly ranging case studies, the dissertation explores a wide variety of physical phenomena found within medical devices and in other applications. Pressure drop and sound generation are the primary focii of the leading case study which constitutes the first-ever analysis of the fluid mechanics of a therapeutic device for the treatment of cystic fibrosis. The treatment utilizes a time varying pressure that acts on the abdomen of the patient in order to break up masses of mucus. The second study is the first known effort to design peristaltic pumps using the principles of fluid-structure interaction. The time-dependent mechanics of peristaltic pumping were utilized to determine the deformations and pressures in the flexible-walled plastic tubing. The change of volume of the tubing serves to propel a liquid contained within the tube. Finally, the third study investigates the fluid mechanics and heat transfer mechanisms found in an enhanced-surface fluid warming device.;The key analysis and design tools used throughout the aforementioned case studies of this dissertation are physical model formulation adapted to computational fluid dynamics (CFD), the theory of turbulence-based sound generation, Ogden's hyperelastic model of polymeric materials, and the theory of heat transfer. The fluid flow phenomena dealt with in this work include three-dimensional, unsteady, laminar and turbulent flows. Heat transfer concepts utilized include conduction within both fluids and solids, advection within interacting parallel flow regions, and the theory of heat transfer enhancement.;Each chapter contains multiple results pertaining to the device in question. These results serve to expand the reader's knowledge of the underlying physical processes which control the function and effectiveness of the medical device.
机译:本文通过数值模拟和参与现象的第一性原理,对医疗器械进行了优化设计。通过三个范围广泛的案例研究,本文探索了在医疗设备和其他应用程序中发现的多种物理现象。压降和声音的产生是主要案例研究的主要重点,该案例构成了用于治疗囊性纤维化的治疗设备的流体力学的首次分析。该治疗利用作用于患者腹部的时变压力来分解粘液团块。第二项研究是使用流固耦合原理设计蠕动泵的第一个已知工作。利用蠕动泵的时变机理来确定柔性壁塑料管中的变形和压力。管的体积变化用于推动管中容纳的液体。最后,第三项研究对增强表面流体加热装置中的流体力学和传热机理进行了研究。本文在上述案例研究中使用的关键分析和设计工具是适应于计算流体动力学(CFD)的物理模型公式化),基于湍流的声音产生理论,聚合物材料的奥格登超弹性模型以及传热理论。这项工作中涉及的流体流动现象包括三维流动,不稳定流动,层流和湍流。所采用的传热概念包括流体和固体中的传导,相互作用的平行流动区域中的对流以及传热增强的理论。每一章包含与所讨论的装置有关的多个结果。这些结果有助于扩大读者对控制医疗设备功能和有效性的基本物理过程的了解。

著录项

  • 作者

    Krautbauer, Kevin Robert.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mechanical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号