首页> 外文学位 >Low voltage circuit design techniques for cubic-millimeter computing.
【24h】

Low voltage circuit design techniques for cubic-millimeter computing.

机译:用于立方毫米计算的低压电路设计技术。

获取原文
获取原文并翻译 | 示例

摘要

Cubic-millimeter computers complete with microprocessors, memories, sensors, radios and power sources are becomingly increasingly viable. Power consumption is one of the last remaining barriers to cubic-millimeter computing and is the subject of this work. In particular, this work focuses on minimizing power consumption in digital circuits using low voltage operation.;Chapter 2 includes a general discussion of low voltage circuit behavior, specifically that at subthreshold voltages. In Chapter 3, the implications of transistor scaling on subthreshold circuits are considered. It is shown that the slow scaling of gate oxide relative to the device channel length leads to a 60% reduction in Ion/Ioff between the 90nm and 32nm nodes, which results in sub-optimal static noise margins, delay, and power consumption. It is also shown that simple modifications to gate length and doping can alleviate some of these problems.;Three low voltage test-chips are discussed for the remainder of this work. The first test-chip implements the Subliminal Processor (Chapter 4), a sub-200mV 8-bit microprocessor fabricated in a 0.13mum technology. Measurements first show that the Subliminal Processor consumes only 3.5pJ/instruction at Vdd=350mV. Measurements of 20 dies then reveal that proper body biasing can eliminate performance variations and reduce mean energy substantially at low voltage. Finally, measurements are used to explore the effectiveness of body biasing, voltage scaling, and various gate sizing techniques for improving speed.;The second test-chip implements the Phoenix Processor (Chapter 5), a low voltage 8-bit microprocessor optimized for minimum power operation in standby mode. The Phoenix Processor was fabricated in a 0.18mum technology in an area of only 915x915mum2. The aggressive standby mode strategy used in the Phoenix Processor is discussed thoroughly. Measurements at Vdd=0.5V show that the test-chip consumes 226nW in active mode and only 35.4pW in standby mode, making an on-chip battery a viable option.;Finally, the third test-chip implements a low voltage image sensor (Chapter 6). A 128x128 image sensor array was fabricated in a 0.13mum technology. Test-chip measurements reveal that operation below 0.6V is possible with power consumption of only 1.9muW at 0.6V. Extensive characterization is presented with specific emphasis on noise characteristics and power consumption.
机译:配备有微处理器,存储器,传感器,无线电和电源的立方毫米计算机正变得越来越可行。功耗是立方毫米计算剩下的最后障碍之一,也是这项工作的主题。特别地,这项工作着重于使用低压操作使数字电路中的功耗最小化。第二章对低压电路的性能进行了一般性讨论,特别是在低于阈值电压下。在第3章中,考虑了晶体管缩放对亚阈值电路的影响。结果表明,栅极氧化物相对于器件沟道长度的缓慢缩放会导致90nm和32nm节点之间的Ion / Ioff降低60%,从而导致静态噪声裕度,延迟和功耗都不理想。还显示出对栅极长度和掺杂的简单修改可以缓解其中的一些问题。在本工作的其余部分中,将讨论三个低压测试芯片。第一个测试芯片实现了Subliminal Processor(第4章),Subliminal Processor是用0.13mum技术制造的低于200mV的8位微处理器。测量首先显示,在Vdd = 350mV时,Subliminal处理器仅消耗3.5pJ /指令。然后对20个芯片进行测量,发现适当的偏置电压可以消除性能差异,并在低电压下大幅降低平均能量。最后,通过测量来探索体偏置,电压缩放和各种栅极尺寸调整技术的有效性,以提高速度;第二个测试芯片实现了Phoenix处理器(第5章),这是针对最小化而优化的低压8位微处理器待机模式下的电源操作。 Phoenix处理器采用0.18mum技术制造,面积仅为915x915mum2。彻底讨论了Phoenix处理器中使用的积极待机模式策略。在Vdd = 0.5V的测量结果表明,测试芯片在活动模式下的功耗为226nW,在待机模式下仅为35.4pW,这使得片上电池成为可行的选择。最后,第三个测试芯片实现了低压图像传感器(第6章)。 128x128的图像传感器阵列采用0.13mm技术制造。测试芯片的测量结果表明,在0.6V以下工作时,只有0.6μV的功耗才可能达到1.9μW。提出了广泛的表征,特别强调了噪声特性和功耗。

著录项

  • 作者

    Hanson, Scott McLean.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号