首页> 外文学位 >Three-dimensional stability/lateral shift analysis of continuous welded rail (CWR) track and innovative methods to enhance CWR track performance.
【24h】

Three-dimensional stability/lateral shift analysis of continuous welded rail (CWR) track and innovative methods to enhance CWR track performance.

机译:连续焊轨(CWR)轨道的三维稳定性/横向偏移分析和提高CWR轨道性能的创新方法。

获取原文
获取原文并翻译 | 示例

摘要

Conventional jointed rail track has an inherent weakness that the rail-working surface is broken at rail joints. Most track deterioration occurs at these joints. The use of continuous welded rail (CWR) track reduces the cost of track maintenance and increases the life cycle of track components significantly. Extreme temperature stress can, however, cause CWR track to buckle (lose stability) in the summer and pull apart in the winter. In 1995, the Association of American Railroads (AAR) estimated the cost of derailments caused by track buckling as approximately {dollar}25 million annually.; The focus of this research was to develop a three-dimensional (3-D) CWR track model, ILLIBUCKLE. The model was used to analyze the stability and lateral shift of tangent and curved track subjected to mechanical and/or temperature loads using the finite element method (FEM). The maximum CWR track length in this model can be up to 5000 or 6000 m, depending on tie spacing and available space in the computer.; Existing field test data and theoretical analytical results were applied to validate the model. The model indicated that track buckling is a 3-D problem and those 2-D models and previous field/laboratory track buckling tests overestimated CWR track stability. Track-buckling temperatures measured in the field and laboratory tests have meaning only when corresponding to specific end stiffness of CWRs even if the track reaches several hundred meters (200 m or 650 ft) in length. The influences of many CWR track parameters can be investigated in ILLIBUCKLE, including the following: track gauge; track geometrical imperfection; neutral temperature difference in two rails; ballast lateral, longitudinal, and vertical resistance; fastener stiffness; rail-joint resistance; reduction of ballast resistance in a few ties due to tamping or uplift of the rail bending wave under vehicle loads; and missing fasteners in a few ties within one and/or two rails.; Innovative methods of enhancing the stability of tamped track and sharp curved track are recommended according to the theoretical findings from this research. Using the innovative methods, railroads can eliminate or reduce slow orders following tamping or track surfacing to improve railroad productivity.
机译:常规的节理式轨道具有固有的弱点,即,轨道工作表面在轨道接头处断裂。大多数磁道劣化发生在这些接缝处。使用连续焊接轨道(CWR)轨道可降低轨道维护成本,并显着增加轨道组件的使用寿命。但是,极端的温度应力会导致CWR履带在夏天弯曲(失去稳定性),并在冬天拉开。 1995年,美国铁路协会(AAR)估计,每年因铁轨弯曲引起的脱轨成本约为2500万美元。这项研究的重点是开发三维(3-D)CWR轨道模型ILLIBUCKLE。该模型用于使用有限元方法(FEM)分析承受机械和/或温度负荷的切线和弯曲轨道的稳定性和横向位移。该型号中最大的CWR轨道长度可以达到5000或6000 m,具体取决于枕木的间距和计算机中的可用空间。应用现有的现场测试数据和理论分析结果来验证模型。该模型表明,轨道屈曲是一个3D问题,而那些2D模型和以前的现场/实验室轨道屈曲测试则高估了CWR轨道的稳定性。即使在履带达到几百米(200 m或650 ft)的情况下,在野外和实验室测试中测得的履带屈曲温度​​仅在对应于CWR的特定端部刚度时才有意义。可以在ILLIBUCKLE中研究许多CWR轨道参数的影响,包括:跟踪几何缺陷;两个导轨的中性温差;镇流器的横向,纵向和垂直阻力;紧固件刚度;轨道接头电阻;由于在车辆载荷下捣固或弯曲钢轨弯曲波而在少数情况下降低了抗压载性能;在一条和/或两条导轨内的几个系带中缺少紧固件。根据这项研究的理论发现,建议采用创新方法来提高夯实轨道和尖锐弯曲轨道的稳定性。使用创新的方法,铁路可以消除或减少夯实或轨道铺面后的缓慢订单,从而提高铁路生产率。

著录项

  • 作者

    Bao, Yu Lin.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号