首页> 外文学位 >Synthesis, characterization and potential applications of iron-platinum nanoparticles.
【24h】

Synthesis, characterization and potential applications of iron-platinum nanoparticles.

机译:铁铂纳米粒子的合成,表征和潜在应用。

获取原文
获取原文并翻译 | 示例

摘要

Monodisperse FePt nanoparticles with controlled size and geometry have drawn great attention in the last decade for fundamental scientific studies and for their potential applications in advanced materials and devices such as ultra-high-density magnetic recording media, exchange-coupled nanocomposite magnets, biomedicines and nanodevices. This dissertation focuses on the synthesis and characterization of FePt nanoparticles and their use in potential applications.;The FePt nanoparticles of different size (2 to 16 nm) and shape (spherical, cubic, rod) were synthesized by a chemical solution method. The size and shape of these particles were controlled by adjusting reaction parameters. The as-synthesized FePt nanoparticles have chemically disordered fcc structure and are superparamagnetic at room temperature. Upon heat treatment the nanoparticles were transformed into ordered L10 structure, and high coercivity up to 27 kOe was achieved. Magnetic properties of annealed FePt nanoparticles including magnetization and coercivity were strongly dependent on particle size, shape, composition and annealing temperature.;FePt/Fe3O4 bimagnetic nanoparticles with two different morphologies, core/shell and heterodimer, were prepared by coating or attaching Fe3O4 on surface of FePt nanoparticles. The size of FePt and Fe3O4 was tuned very finely to obtain most effective exchange coupling. The heterodimer nanoparticles resulted in relatively poor magnetic properties compared to the core/shell nanoparticles due to insufficient exchange coupling. By optimizing the dimensions of the FePt and Fe3O 4 in core/shell bimagnetic nanoparticles, energy products up to 17.8 MGOe were achieved.;FePt/Fe3O4 core/shell and FePt+Fe3O 4 mixed nanoparticles with similar magnetic properties were compacted under 2.0 GPa at 400°C, 500°C and 600°C. A density up to 84% of the full density was achieved. After annealing at 650°C in forming gas, the FePt/Fe3O4 compacted samples were converted into L10 FePt/Fe3Pt magnetic nanocomposite. The nanoscale morphology was retained before and after annealing for bulk samples made from both core/shell and mixed nanoparticles. After annealing, the highest energy product in the bulk samples was 18.1 MGOe based on the theoretical density. The core/shell nanoparticle compacted samples had more effective exchange coupling than the mixed nanoparticle compacted samples.;FePt/Au core/shell nanoparticles were successfully synthesized where Au shell was coated by reduction of gold acetate on surface of FePt nanoparticles. The FePt/Au core/shell nanoparticles show ferromagnetism after annealing at optimum temperature without any significant sintering. Also, FePtAu nanoparticles were prepared by doping Au into FePt nanoparticles during the synthesis. By tuning right stoichiometry of the FexPtyAu100-x-y nanoparticles, the phase transition temperature from fcc to L1 0 was reduced by more than 200°C. After annealing at 500°C, the highest coercivity of 18 kOe was obtained from the Fe51Pt 36Au13 nanoparticles compared to 2 kOe from Fe51Pt 49 nanoparticles without any sacrifice in saturation magnetization.
机译:在过去的十年中,具有可控尺寸和几何形状的单分散FePt纳米颗粒在基础科学研究及其在先进材料和设备(如超高密度磁记录介质,交换耦合纳米复合磁体,生物医学和纳米设备)中的潜在应用中引起了极大关注。 。本文主要研究FePt纳米粒子的合成,表征及其在潜在应用中的应用。通过化学溶液法合成了不同尺寸(2〜16nm)和形状(球形,立方,棒状)的FePt纳米粒子。这些颗粒的大小和形状通过调节反应参数来控制。合成后的FePt纳米颗粒具有化学无序的fcc结构,并且在室温下是超顺磁性的。热处理后,纳米颗粒转变为有序的L10结构,并获得高达27 kOe的高矫顽力。退火后的FePt纳米粒子的磁性能(包括磁化强度和矫顽力)很大程度上取决于颗粒的大小,形状,组成和退火温度.FePt / Fe3O4双磁性纳米粒子具有两种不同的形态,核/壳和异二聚体,是通过在表面涂覆或附着Fe3O4来制备的FePt纳米颗粒。对FePt和Fe3O4的大小进行了非常精细的调整,以获得最有效的交换耦合。由于交换耦合不足,与核/壳纳米颗粒相比,异二聚体纳米颗粒导致相对较差的磁性。通过优化芯/壳双磁性纳米颗粒中FePt和Fe3O 4的尺寸,获得了高达17.8 MGOe的能量积。在2.0 GPa下,将具有相似磁性的FePt / Fe3O4芯/壳和FePt + Fe3O 4混合纳米颗粒压实。 400°C,500°C和600°C。达到最高总密度的84%的密度。在形成气体中在650°C退火后,将压缩的FePt / Fe3O4样品转化为L10 FePt / Fe3Pt磁性纳米复合材料。对于由核/壳和混合纳米颗粒制成的大量样品,在退火前后,纳米级形态得以保留。退火后,基于理论密度,大块样品中的最高能量积为18.1 MGOe。核/壳纳米颗粒致密样品比混合纳米颗粒致密样品具有更有效的交换耦合。成功地合成了FePt / Au核/壳纳米颗粒,其中通过还原乙酸金在FePt纳米颗粒表面上涂覆了Au壳。 FePt / Au核/壳纳米粒子在最佳温度下退火后显示出铁磁性,而没有任何明显的烧结。同样,通过在合成过程中将Au掺杂到FePt纳米颗粒中来制备FePtAu纳米颗粒。通过调整FexPtyAu100-x-y纳米粒子的正确化学计量,从fcc到L1 0的相变温度降低了200°C以上。在500°C退火后,从Fe51Pt 36Au13纳米颗粒获得的最高矫顽力为18 kOe,而从Fe51Pt 49纳米颗粒获得的2 kOe却没有牺牲饱和磁化强度。

著录项

  • 作者

    Nandwana, Vikas.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Physics Electricity and Magnetism.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电磁学、电动力学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号