首页> 外文学位 >Gallium phosphide as the high bandgap material in high-efficiency multi-junction solar photovoltaics.
【24h】

Gallium phosphide as the high bandgap material in high-efficiency multi-junction solar photovoltaics.

机译:磷化镓是高效多结太阳能光伏中的高带隙材料。

获取原文
获取原文并翻译 | 示例

摘要

In the endeavor to meet the ever increasing energy demands of the world, two methodologies of converting solar energy to electrical energy have dominated the solar photovoltaic field. The first method utilizes a material with high conversion efficiencies over a very large area, balancing material efficiency with material cost. The second method utilizes relatively expensive materials with very high conversion efficiencies but uses optical concentration systems to greatly reduce the quantity of material required. The increase in efficiency of this method is accomplished by incorporating multiple materials in the photovoltaic device. State of the art laboratory results have achieved efficiencies close to 43%.;In an effort to push this efficiency higher, this research focuses on a weak spot in the multi-junction photovoltaic field; the conversion of high-energy photons (green-blue to UV). The material chosen for this is Gallium Phosphide. Results for a baseline p-n junction device are presented, as well as improvements on the baseline device yielding an efficiency of 2:6% of AM1:5-global. A Voc of 1.59V is achieved at 12x concentration. An internal quantum efficiency of ≈ 100% is achieved at 440nm. Methods for simulating photovoltaic devices to identify key performance limiters are presented. Schottky devices are analyzed. Temperature effects are investigated. Suggestions for future improvements on a GaP photovoltaic device are presented.
机译:为了满足世界上不断增长的能源需求,将太阳能转换为电能的两种方法已主导了太阳能光伏领域。第一种方法利用在很大面积上具有高转换效率的材料,从而在材料效率和材料成本之间取得平衡。第二种方法利用转换效率非常高的相对昂贵的材料,但是使用光学集中系统来大大减少所需的材料量。通过在光伏器件中结合多种材料来实现该方法效率的提高。最新的实验室结果已达到近43%的效率。为了提高效率,本研究着眼于多结光伏领域的薄弱环节。高能光子的转换(从绿蓝色到UV)。为此选择的材料是磷化镓。给出了基准p-n结器件的结果,以及对基准器件的改进,得出AM1:5-global的效率为2:6%。在12倍浓度下可获得1.59V的Voc。内部量子效率为≈在440nm下达到100%。提出了模拟光伏设备以识别关键性能限制因素的方法。对肖特基器件进行了分析。研究温度效应。提出了对GaP光伏器件的未来改进的建议。

著录项

  • 作者

    Allen, Charles R.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Alternative Energy.;Engineering Materials Science.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号