首页> 外文学位 >Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites.
【24h】

Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites.

机译:增强锂离子电池电极的原子和分子层沉积以及导电金属氧化物/碳复合材料的开发。

获取原文
获取原文并翻译 | 示例

摘要

The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures.;Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films is presented as a method for enabling non-conductive, but possibly electrochemically active materials, to be used for electrochemical applications.
机译:锂离子电池(LIB)的性能和安全性取决于正极和负极的界面过程。例如,已知在阴极和阳极上形成的表面层会影响LIB的动力学和容量。还已知电解质和电极之间的界面反应会在损害电池安全性的热失控事件期间引发电解质燃烧。原子层沉积(ALD)和分子层沉积(MLD)是基于连续的自限表面反应的薄膜沉积技术。 ALD和MLD可以在高深宽比的多孔薄膜和诸如锂离子电池中的复合颗粒电极的表面上沉积超薄膜和保形膜。使用多种技术研究了通过ALD和MLD修饰电极表面的效果。发现通过ALD沉积的亚纳米厚的Al 2 O 3涂层对LIB阳极和阴极的稳定性具有有益的影响。发现这些相同的Al2O3 ALD膜可通过防止在高温下放热的固体电解质界面(SEI)降解来提高石墨基阳极的安全性。利用MLD技术与三甲基铝一起生长被称为“金属锥”的超拉丁和保形金属醇盐聚合物膜(TMA)或四氯化钛(TiCl4)以及有机二醇或三醇,例如乙二醇(EG),甘油(GL)或对苯二酚(HQ),作为反应物。这些金属锥膜在惰性气体条件下的热解导致了导电金属氧化物/碳复合材料的发展。使用微拉曼光谱法在热解温度≥600°C的热解膜中发现复合材料包含sp2碳。四点探针测量表明,使用GL和HQ生长的金属锥膜中的石墨sp2碳域导致明显的电导率。保形MLD膜的热解以获得导电金属氧化物/碳复合膜被提出为一种使非导电但可能是电化学活性材料能够用于电化学应用的方法。

著录项

  • 作者

    Travis, Jonathan.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemistry.;Energy.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号