首页> 外文学位 >Modelling specific ion effects with the continuum solvent approach.
【24h】

Modelling specific ion effects with the continuum solvent approach.

机译:使用连续溶剂方法对特定离子效应进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Electrolyte solutions play a central role in many processes from industry to biology. Understanding and building predictive models of their properties has therefore been a fundamental goal of physical chemistry from its beginnings. The challenge remains.;These three calculations can be used to reproduce experimental solvation free energies, solvation entropies, partial molar volumes, surface tensions and activity/osmotic coefficients of the alkali-halide electrolyte solutions. A minimum of parameters are used and crucially no salt--specific fitting parameters are necessary. The model is quantitative and predictive and is therefore a satisfactory model of electrolyte solutions.;It provides an explanation of several key qualitative puzzles regarding these properties. Namely that ions of the same size can have different solvation energies, that large ions can adsorb to the air--water interface and that ions in solution that have similar solvation energies are more strongly attracted to each other than ions that have dissimilar solvation energies. The continuum solvent model and separate ab initio calculations show that dispersion interactions play a key role in controlling these effects. In particular, dispersion energies explain the attraction of large ions for each other in water and the difference in solvation energy of ions of the same size. The success of the model implies that it is possible to understand the key properties of electrolyte solutions using a continuum solvent model. This is an important conclusion considering the massive computational demands of explicit solvent treatments.;In this thesis I outline a continuum solvent model of univalent monatomic ions in water. This model calculates the free energy of: 1) a single ion in bulk, 2) of an ion approaching the air--water interface and 3) of two ions approaching each other. Its central advancements are to include quantitatively accurate ionic dispersion interaction energies, missing from classical theories, including the higher order multipole moment contributions to these interactions. It also includes the contribution from the cavity formation energy consistently, including the effect of changes in the cavity's shape. Lastly, it uses a quantum mechanical treatment of the ions and provides satisfactory values for their size parameters. Because one consistent framework is used with the same assumptions to calculate the free energies in these three different situations the number of parameters can be minimised and the model can be properly tested.
机译:电解质溶液在从工业到生物学的许多过程中都起着核心作用。因此,从一开始就了解并建立其特性的预测模型一直是物理化学的基本目标。仍然存在挑战;这三个计算可用于再现实验性的溶剂化自由能,溶剂化熵,部分摩尔体积,表面张力以及卤化碱电解质溶液的活性/渗透系数。使用最少的参数,并且至关重要的是,不需要盐专用的拟合参数。该模型是定量的和可预测的,因此是令人满意的电解质溶液模型。;它提供了有关这些特性的几个关键的定性难题的解释。也就是说,相同大小的离子可以具有不同的溶剂化能,较大的离子可以吸附到空气-水界面,并且具有相似溶剂化能的溶液中的离子比具有不同溶剂化能的离子更强地相互吸引。连续溶剂模型和单独的从头算计算表明,分散体相互作用在控制这些效应中起关键作用。特别是,分散能解释了大离子在水中的相互吸引以及相同大小离子的溶剂化能的差异。该模型的成功意味着可以使用连续溶剂模型来了解电解质溶液的关键特性。考虑到显式溶剂处理的大量计算需求,这是一个重要的结论。;本文概述了水中单价单原子离子的连续溶剂模型。该模型计算的自由能为:1)单个离子散装; 2)离子接近空气-水界面; 3)两个离子彼此接近。它的主要进步是包括定量理论上精确的离子弥散相互作用能,这是经典理论所缺少的,包括对这些相互作用的高阶多极矩贡献。它还包括一致地来自空腔形成能的贡献,包括空腔形状变化的影响。最后,它对离子进行了量子力学处理,并为其离子尺寸参数提供了令人满意的值。由于在相同的假设下使用了一个一致的框架来计算这三种不同情况下的自由能,因此可以最小化参数数量,并且可以正确地测试模型。

著录项

  • 作者

    Duignan, Timothy T.;

  • 作者单位

    The Australian National University (Australia).;

  • 授予单位 The Australian National University (Australia).;
  • 学科 Physical chemistry.;Molecular chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号