...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics
【24h】

Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics

机译:利用具有基于受约束平衡热力学的可极化连续体模型获得的抗激励能量的溶剂效应

获取原文
获取原文并翻译 | 示例
           

摘要

Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl) prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.
机译:在研究溶质的电子吸收过程中,需要适当地治疗不适当处理溶剂化效应,因为溶剂偏振不与溶质的激发态充电密度平衡。在这项工作中,我们开发了一种基于新型非预测溶剂化模型的状态特定(SS)方法,具有受约束的平衡操作,以考虑电子吸收过程中的溶剂化效应。采用时间依赖性密度泛函理论(TD-DFT)来计算电子励磁能量,并且可以在处理地面和激发电子状态的批量溶剂效果中使用可极化的连续体模型。在Q-Chem封装中提出和实施了基于TDDFT框架中的基于这种新型非QuiLibib求解模型的方程,并在Q-Chem包中实现。通过比较从Q-Chem获得的两个原子之间的电荷转移激发的重组能量和使用双球模型获得的那些来验证实现。对香豆素153(C153),丙酮,吡啶,(2E)-3-(3,4-二甲氧基苯基)-1-(2-羟基苯基)PRO-2-EN-1-ON(DMHP)的电子转变的溶剂效应对使用新开发的代码调查不同溶剂中的尿嘧啶。我们的结果表明,所获得的垂直励磁能量以及光谱偏移通常比使用传统的虚空解压溶剂化模型获得的实验值更好地达到更好。因此,这种新模型是适当的解决方案中非纤维励磁过程。

著录项

  • 来源
  • 作者单位

    Sichuan Univ Coll Chem Engn Chengdu 610065 Sichuan Peoples R China;

    Sichuan Univ Coll Chem Engn Chengdu 610065 Sichuan Peoples R China;

    Sichuan Univ Inst Atom &

    Mol Phys Chengdu 610065 Sichuan Peoples R China;

    Sichuan Univ Coll Chem Engn Chengdu 610065 Sichuan Peoples R China;

    Sichuan Univ Coll Chem Engn Chengdu 610065 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号