首页> 外文学位 >Newton's method backpropagation for complex-valued holomorphic neural networks: Algebraic and analytic properties.
【24h】

Newton's method backpropagation for complex-valued holomorphic neural networks: Algebraic and analytic properties.

机译:牛顿方法对复值全纯神经网络的反向传播:代数和解析性质。

获取原文
获取原文并翻译 | 示例

摘要

The study of Newton's method in complex-valued neural networks (CVNNs) faces many difficulties. In this dissertation, we derive Newton's method backpropagation algorithms for complex-valued holomorphic multilayer perceptrons (MLPs), and we investigate the convergence of the one-step Newton steplength algorithm for the minimization of real-valued complex functions via Newton's method. The problem of singular Hessian matrices provides an obstacle to the use of Newton's method backpropagation to train CVNNs. We approach this problem by developing an adaptive underrelaxation factor algorithm that avoids singularity of the Hessian matrices for the minimization of real-valued complex polynomial functions.;To provide experimental support for the use of our algorithms, we perform a comparison of using sigmoidal functions versus their Taylor polynomial approximations as activation functions by using the Newton and pseudo-Newton backpropagation algorithms developed here and the known gradient descent backpropagation algorithm. Our experiments indicate that the Newton's method based algorithms, combined with the use of polynomial activation functions, provide significant improvement in the number of training iterations required over the existing algorithms. We also test our underrelaxation factor algorithm using a small-scale polynomial neuron and a polynomial MLP. Finally, we investigate the application of an algebraic root-finding technique to the case of a polynomial MLP to develop a theoretical framework for the location of initial weight vectors that will guarantee successful training.
机译:牛顿法在复值神经网络(CVNN)中的研究面临许多困难。本文推导了牛顿法用于复数值全同形多层感知器(MLP)的反向传播算法,并通过牛顿法研究了一步牛顿步长算法的收敛性,以最小化实数值复数函数。奇异的Hessian矩阵问题为使用牛顿方法的反向传播训练CVNN提供了障碍。我们通过开发一种自适应欠松弛因子算法来解决此问题,该算法避免了Hessian矩阵的奇异性,从而使实值复多项式函数的最小化。为了为我们的算法的使用提供实验支持,我们对使用S形函数与通过使用此处开发的牛顿和拟牛顿反向传播算法以及已知的梯度下降反向传播算法,将它们的泰勒多项式逼近作为激活函数。我们的实验表明,基于牛顿法的算法,结合多项式激活函数的使用,与现有算法相比,可显着改善所需的训练迭代次数。我们还使用小型多项式神经元和多项式MLP测试了我们的松弛因子算法。最后,我们研究了将代数寻根技术应用于多项式MLP的情况,从而为初始权重向量的定位建立了理论框架,以保证成功的训练。

著录项

  • 作者

    La Corte, Diana Thomson.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Mathematics.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号