首页> 外文学位 >Enhanced Light Absorption and Electro-Absorption Modulation Based on Graphene and Conductive Oxide
【24h】

Enhanced Light Absorption and Electro-Absorption Modulation Based on Graphene and Conductive Oxide

机译:基于石墨烯和导电氧化物的增强的光吸收和电吸收调制

获取原文
获取原文并翻译 | 示例

摘要

The development of integrated photonics is limited by bulky and inefficient photonic component compared to their electronic counterparts due to weak light-matter interactions. As the key devices that determine the performance of integrated photonic circuits, electro-optical (EO) modulators are inherently built on the basis of enhancing light-matter interactions. Current EO modulators often deploy conventional materials with poor EO properties, or ring resonator structure with narrow bandwidth and thermal instability, so their dimensions and performance have nearly reached their physical limits. Future integrated photonic interconnects require EO modulators to be ultra-compact, ultra-fast, cost-effective and able to work over a broad bandwidth. The key to achieving this goal is to identify an efficient and low-cost active material. Meanwhile, novel waveguides and platforms need to be explored to significantly enhance light-active medium interaction. As widely investigated novel materials, graphene and conductive oxide (COx) have shown remarkable EO properties. The objective of this dissertation is to realize enhanced light-matter interaction based on these two novel materials and waveguiding platforms, and further develop ultra-compact, ultra-fast EO modulators for future photonic integrated circuits. The first part of this dissertation covers the theory of EO modulation mechanisms, several types of EO materials including graphene and COx, as well as fabrication techniques. The second part demonstrates greatly enhanced light absorption based on mono-/multi-layer graphene. The third part proposes the theoretical study of nanoscale EA modulators based on ENZ-slot waveguide. The fourth part explores the field effect within a MOS-like structure, and verifies the ENZ behavior of COx. The fifth part experimentally demonstrates both plasmonic and dielectric configurations for ultra-compact and ultra-fast EA modulators. The final part summarizes the work presented in this dissertation and also discusses some future work for photonic applications.
机译:集成光子技术的发展受到光电子相互作用弱的限制,与电子同类产品相比,光子组件体积庞大且效率低下。作为决定集成光子电路性能的关键设备,电光(EO)调制器是在增强光物质相互作用的基础上固有地构建的。当前的EO调制器通常使用EO性能差的常规材料,或者具有窄带宽和热不稳定性的环形谐振器结构,因此它们的尺寸和性能已接近其物理极限。未来的集成光子互连需要EO调制器超紧凑,超快速,经济高效并能够在较宽的带宽上工作。实现此目标的关键是确定一种高效且低成本的活性物质。同时,需要探索新颖的波导和平台以显着增强光敏介质的相互作用。作为广泛研究的新型材料,石墨烯和导电氧化物(COx)已显示出卓越的EO性能。本文的目的是基于这两种新型材料和波导平台,实现增强的光-质相互作用,并进一步为未来的光子集成电路开发超紧凑,超快的电光调制器。本文的第一部分涵盖了电光调制机理的理论,包括石墨烯和二氧化碳在内的几种电光材料以及制造技术。第二部分展示了基于单层/多层石墨烯的光吸收大大增强。第三部分提出了基于ENZ缝隙波导的纳米级EA调制器的理论研究。第四部分探讨了MOS状结构内的场效应,并验证了COx的ENZ行为。第五部分实验证明了超紧凑和超快EA调制器的等离子体和介电结构。最后一部分总结了本文的工作,并讨论了光子应用的一些未来工作。

著录项

  • 作者

    Shi, Kaifeng.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号