首页> 外文学位 >Resource limits and conversion efficiency with implications for climate change and California's energy supply.
【24h】

Resource limits and conversion efficiency with implications for climate change and California's energy supply.

机译:资源限制和转换效率会影响气候变化和加利福尼亚的能源供应。

获取原文
获取原文并翻译 | 示例

摘要

There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based on aggregated reserve numbers.Electric power generation consumes 92 percent of U.S. coal production. Natural gas competes with coal as a baseload power generation fuel with similar or slightly better generation efficiency. Fischer-Tropsch synthesis, described in Chapter 2, creates transportation fuel from coal with an efficiency of less than 45 percent. Claims of higher efficiencies are based on waste heat recovery, since this is a highly exothermic process. The yield of liquid fuel as a proportion of the energy content of the coal input is always less than 45 percent. Compressed natural gas can be used for vehicle fuel with efficiency greater than 98 percent. If we view Fischer-Tropsch synthesis as a form of arbitrage between markets for electricity and transportation fuel, coal cannot simultaneously compete with natural gas for both transportation fuel and electric power. This is because Fischer-Tropsch synthesis is a way to turn power generation fuel into transportation fuel with low efficiency, while natural gas can be converted to transportation fuel with much greater efficiency. For this reason, Fischer-Tropsch synthesis will be an uneconomic source of transportation fuel as long as natural gas is economic for power generation. This conclusion holds even without the very high capital cost of coal-to-liquids plants.The Intergovernmental Panel on Climate Change (IPCC) has generated forty carbon production and emissions scenarios, see the IPCC Special Report on Emissions Scenarios (2000). Chapter 4 develops a base-case scenario for global coal production based on the physical multi-cycle Hubbert analysis of historical production data. Areas with large resources but little production history, such as Alaska or Eastern Siberia, can be treated as sensitivities on top of this base case. The value of our approach is that it provides a reality check on the magnitude of carbon emissions in a business-as-usual (BAU) scenario. The resulting base case is significantly below 36 of the 40 carbon emission scenarios from the IPCC, and the global peak of coal production from existing coalfields is predicted to occur about the year 2011. The peak coal production rate calculated here is 160 EJ/y, and the associated peak carbon emissions from coal burning are 4.5 Gt C per year. After 2011, the production rates of coal and CO2 decline, reaching 1990 levels by the year 2037, and reaching 50% of the peak value in the year 2047. It is unlikely that future mines will reverse the trend predicted in the base case scenario here, and current efforts to sequester carbon or to convert coal into liquid fuels should be reexamined in light of resource limits. (Abstract shortened by UMI.)
机译:有两种常用的方法来模拟未来矿产资源的供应。一种是估算储量并将结果与​​提取率进行比较,另一种是根据提取率的历史时间序列进行预测。对中东丰富的石油供应和美国丰富的煤炭供应的看法是基于前一种方法的。在这两种情况下,基于历史产量序列的方法所得出的资源估计量要比总储备量小得多。这种差异并不意味着美国的系统化天然气产量显示出强劲的增长趋势,尽管适度的储量估算导致了三十年来对天然气供应的担忧。未来中东石油产量下降的隐含含义是,运输燃料市场正面临重大变化,应从这一角度分析替代燃料。由于美国拥有大量煤炭储备,因此有人建议从煤炭中合成液态烃作为替代燃料。为了评估此过程的潜力,必须同时考虑资源基础和净效率。在1996年至2006年期间,煤炭产量下降幅度最大的三个州是煤炭储量排名前五的国家,这表明煤炭储量不足以作为未来产量的指标。在美国能源信息署报告的三类煤炭储量中,现有矿山的储量是最窄的类别,大约等于已探明的已开发石油储量。通过这种方法,怀俄明州拥有美国最大的煤炭储量,占1996年至2006年期间美国所有煤炭产量的增长。在第2章中,对1850年至2007年煤炭生产历史数据的多周期Hubbert曲线分析表明,美国无烟煤和烟煤已超过其生产峰值。该结果与基于总储量的估算结果相矛盾。发电量消耗了美国92%的煤炭产量。天然气作为基本负荷发电燃料与煤炭竞争,其发电效率相近或略高。第2章所述的费-托合成法从煤炭中产生的运输燃料效率不到45%。由于废热回收是一个高度放热的过程,因此声称具有更高的效率。液体燃料的产量占煤炭输入能量的比例始终低于45%。压缩天然气可用于汽车燃料,效率超过98%。如果我们将费托综合视为电力和运输燃料市场之间的套利形式,那么煤炭就不能同时与天然气竞争运输燃料和电力。这是因为费-托合成是一种将发电燃料转换为效率低的运输燃料的方法,而天然气可以转换为效率更高的运输燃料。因此,只要天然气对发电来说是经济的,费-托合成将成为运输燃料的不经济来源。即使没有煤制油厂的非常高的资本成本,该结论也成立。政府间气候变化专门委员会(IPCC)产生了40种碳生产和排放情景,请参阅IPCC排放情景特别报告(2000)。第4章基于历史生产数据的物理多周期Hubbert分析,为全球煤炭生产提供了一个基本案例。资源丰富但生产历史很少的地区,例如阿拉斯加或西伯利亚东部,在这种基本情况的基础上,可以视为敏感地区。我们的方法的价值在于,它可以照常检查(BAU)方案中的碳排放量。由此产生的基本情况大大低于IPCC提出的40种碳排放情景中的36种,预计现有煤田的全球煤炭产量峰值将发生在2011年左右。此处计算出的最高煤炭生产率为160 EJ / y,每年燃煤相关的碳排放峰值为4.5 GtC。 2011年之后,煤炭和二氧化碳的生产率下降,到2037年达到1990年的水平,并在2047年达到峰值的50%。未来的矿山不太可能会扭转基本情况下的预测趋势,目前应根据资源限制重新审查固碳或将煤转化为液体燃料的努力。 (摘要由UMI缩短。)

著录项

  • 作者

    Croft, Gregory Donald.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.Energy.Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号