首页> 外文学位 >Design and fabrication of a nanocantilever for high-speed force microscopy.
【24h】

Design and fabrication of a nanocantilever for high-speed force microscopy.

机译:用于高速力显微镜的纳米悬臂的设计和制造。

获取原文
获取原文并翻译 | 示例

摘要

The atomic force microscope (AFM) has become an important tool in many fields ranging from materials science to biology. The central component of the AFM is a probe consisting of a soft cantilever to which a sharp tip is attached. By scanning the probe over the surface of a sample and measuring small deflections of the cantilever, atomic resolution images can be obtained for both conducting and non-conducting samples. Unfortunately, the scan speed of conventional AFM is limited such that several minutes are required to obtain a high-quality image. If the scan speed of the AFM could be increased to allow for dynamic imaging, it could be used for many new applications in materials science, life science and process control.;Much of the current work toward high-speed AFM has involved improvements to scanners and electronics. Innovative scanner design and control has resulted in operational frequencies up to 1 MHz while specialized electronics has pushed the feedback bandwidth up to 100 MHz. To realize the full potential of these systems, a cantilever with a resonance frequency much greater than 100 MHz is required. Unfortunately, current microfabrication techniques used to produce AFM cantilevers limits the fundamental resonance frequency to several MHz.;The purpose of this project was to miniaturize a cantilever into the nanometer regime allowing for increased resonance frequencies. Three modeling methods were used to design a 200 MHz silicon nitride cantilever suitable for integration into an atomic resolution, frequency-modulation AFM. A process was developed to fabricate the cantilever coupled to an atomic point contact (APC) displacement detector. The cantilever mask and APC electrodes were defined through electron-beam lithography and double-angle evaporation. The cantilever pattern was transferred to the nitride layer through focused ion beam milling; a subsequent wet etch into the underlying Si substrate suspended the structure. Then, using an active feedback system, electromigration was used to form the APC at 77 K and 10-6 Torr. Progress was also made toward measuring cantilever motion with the APC displacement detector through microwave reflectometry.
机译:从材料科学到生物学,原子力显微镜(AFM)已成为许多领域的重要工具。 AFM的中心组件是一个探针,该探针由一个柔软的悬臂组成,并附有锋利的尖端。通过在样品表面上扫描探针并测量悬臂的小挠度,可以获得导电样品和非导电样品的原子分辨率图像。不幸的是,常规AFM的扫描速度受到限制,使得需要几分钟来获得高质量图像。如果可以提高AFM的扫描速度以进行动态成像,那么它可以用于材料科学,生命科学和过程控制中的许多新应用。;目前,高速AFM的许多工作都涉及对扫描仪的改进。和电子产品。创新的扫描仪设计和控制可将工作频率提高到1 MHz,而专用电子设备将反馈带宽提高到100 MHz。为了充分发挥这些系统的潜力,需要谐振频率远远大于100 MHz的悬臂。不幸的是,当前用于制造AFM悬臂的微细加工技术将基本共振频率限制在几兆赫兹。该项目的目的是将悬臂小型化为纳米级,以增加共振频率。三种建模方法用于设计一个200 MHz氮化硅悬臂,适用于集成到原子分辨率,频率调制AFM中。开发了一种制造与原子点接触(APC)位移检测器耦合的悬臂的工艺。悬臂掩模和APC电极是通过电子束光刻和双角度蒸发法定义的。通过聚焦离子束研磨将悬臂图案转移到氮化物层上;随后对下面的Si衬底进行湿法蚀刻,使该结构悬浮。然后,使用主动反馈系统,使用电迁移形成77 K和10-6 Torr的APC。在APC位移检测器通过微波反射仪测量悬臂运动方面也取得了进展。

著录项

  • 作者

    Campbell, Jennifer Maureen.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Physics Condensed Matter.
  • 学位 M.Sc.(Eng)
  • 年度 2009
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号