首页> 外文学位 >Meshless methods for computational fluid dynamics.
【24h】

Meshless methods for computational fluid dynamics.

机译:用于计算流体动力学的无网格方法。

获取原文
获取原文并翻译 | 示例

摘要

While the generation of meshes has always posed challenges for computational scientists, the problem has become more acute in recent years. Increased computational power has enabled scientists to tackle problems of increasing size and complexity. While algorithms have seen great advances, mesh generation has lagged behind, creating a computational bottleneck. For industry and government looking to impact current and future products with simulation technology, mesh generation imposes great challenges. Many generation procedures often lack automation, requiring many man-hours, which are becoming far more expensive than computer hardware. More automated methods are less reliable for complex geometry with sharp corners, concavity, or otherwise complex features. Most mesh generation methods to date require a great deal of user expertise to obtain accurate simulation results. Since the application of computational methods to real world problems appears to be paced by mesh generation, alleviating this bottleneck potentially impacts an enormous field of problems.;Meshless methods applied to computational fluid dynamics is a relatively new area of research designed to help alleviate the burden of mesh generation. Despite their recent inception, there exists no shortage of formulations and algorithms for meshless schemes in the literature. A brief survey of the field reveals varied approaches arising from diverse mathematical backgrounds applied to a wide variety of applications. All meshless schemes attempt to bypass the use of a conventional mesh entirely or in part by discretizing governing partial differential equations on scattered clouds of points.;A goal of the present thesis is to develop a meshless scheme for computational fluid dynamics and evaluate its performance compared with conventional methods. The meshless schemes developed in this work compare favorably with conventional finite volume methods in terms of accuracy and efficiency for the Euler and Navier-Stokes equations. The success of these schemes may be largely attributeed their sound mathematical foundation based on a local extremum diminishing property, which has been generalized to handle local clouds of points instead of mesh-based topologies.;In addition, powerful algorithms are developed to accelerate convergence for meshless schemes, which also apply to mesh based schemes in a mesh transparent manner. The convergence acceleration technique, termed "multicloud," produces schemes with convergence rates rivaling structured multigrid. However, the advantage of multicloud is that it makes no assumptions regarding mesh topology or discretization used on the finest level. Thus, multicloud is extrememly general and widely applicable.;Finally, a unique application of meshless methods is demonstrated for overset grids in which a meshless method is used to seamlessly connect different types of grids. It is shown that meshless methods provide significant advantages over conventional interpolation procedures for overset grids. This application serves to highlight the practical utility of meshless schemes for computational fluid dynamics.
机译:尽管网格的生成一直对计算科学家构成挑战,但近年来这一问题变得更加严重。计算能力的提高使科学家能够解决规模越来越大,复杂性越来越高的问题。尽管算法取得了长足的进步,但网格生成却落后了,从而造成了计算瓶颈。对于希望通过仿真技术影响当前和未来产品的行业和政府而言,网格生成带来了巨大的挑战。许多生成过程通常缺乏自动化,需要很多工时,这比计算机硬件要昂贵得多。对于具有尖角,凹度或其他复杂特征的复杂几何形状,自动化程度更高的方法不太可靠。迄今为止,大多数网格生成方法都需要大量的用户专业知识才能获得准确的仿真结果。由于计算方法在实际问题上的应用似乎取决于网格生成的步伐,因此缓解这一瓶颈可能会影响到巨大的问题领域。无网格方法在计算流体动力学中的应用是一个相对较新的研究领域,旨在减轻负担网格生成。尽管它们是最近成立的,但是在文献中不乏用于无网格方案的公式和算法。对该领域的简要调查揭示了由于应用于各种应用程序的数学背景不同而产生的各种方法。所有无网格方案都试图通过离散控制点散布在点云上的偏微分方程来完全或部分地绕过常规网格的使用。本论文的目的是开发一种用于计算流体动力学的无网格方案,并比较其性能。用常规方法。就Euler和Navier-Stokes方程的准确性和效率而言,这项工作中开发的无网格方案与传统的有限体积方法相比具有优势。这些方案的成功很大程度上可以归功于其基于局部极值递减特性的良好数学基础,该特性已被普遍用于处理点的局部云,而不是基于网格的拓扑。无网格方案,它也以网格透明方式应用于基于网格的方案。融合加速技术(称为“多云”)产生的方案的融合速率可与结构化多重网格相媲美。但是,多云的优势在于,它不会对在最佳级别使用的网格拓扑或离散化做出任何假设。因此,多云具有极高的通用性和广泛的适用性。最后,论证了无网格方法在高架网格中的独特应用,其中无网格方法用于无缝连接不同类型的网格。结果表明,与传统的插值程序相比,无网格方法提供了显着的优势,可用于覆盖网格。此应用程序旨在强调用于计算流体动力学的无网格方案的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号