首页> 外文学位 >Thin film nickel titanium in MEMS valve and membrane wrinkling control.
【24h】

Thin film nickel titanium in MEMS valve and membrane wrinkling control.

机译:MEMS阀中的薄膜镍钛和薄膜起皱控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents applications of thin nickel titanium (NiTi) films in MEMS valves and a thin film membrane wrinkling control. First, modeling, fabrication, and testing results for a high flow rate and high frequency NiTi MEMS valve are presented. A finite element analysis is used to evaluate several NiTi MEMS valve structural designs with the conclusion that a pentagonal flap with five legs produces higher frequencies and higher strengths without the inherent rotation problem present in four leg designs. The NiTi penta-leg design was fabricated using novel MEMS fabrication methods. Bi-layer lift-off methods were used to produce a non-rotational ortho-planar NiTi MEMS microvalve array without the problems inherent in conventional NiTi wet etching. The array consists of 65 microvalves with a single valve dimension of 1mm in circumference, 50 microm in leg width, and 8.2 microm in NiTi thickness. Each microvalve covers an orifice of 220 microm diameter and 500 microm length and the microvalve is capable of producing a 150 microm vertical deflection. The NiTi MEMS valve array was tested for flow rates in a hydraulic system as a function of applied pressure with a maximum water flow rate of 16.44 cc/s.;A novel concept for controlling surface wrinkles in a NiTi membrane is also presented. ANSYSRTM is utilized to determine the membrane's length and width as well as thickness to produce wrinkling in a NiTi test sample. Test results conducted on a NiTi 20.9 mmx10.8 mmx5.54 microm sample produce wrinkling at approximately 1% strain, which is the critical strain (epsiloncr). Using the phase transformation properties and corresponding stiffness change, wrinkling control (i.e. turning it on and off) is possible simply by changing the temperature through the phase transformation. The maximum amplitude of the wrinkles was 44.8+/-6.4 microm and the wavelength was 2.10+/-0.40 mm in relatively good agreement with analysis.
机译:本文介绍了镍钛合金薄膜在MEMS阀中的应用以及薄膜起皱控制技术。首先,介绍了高流量和高频NiTi MEMS阀的建模,制造和测试结果。有限元分析用于评估几种NiTi MEMS阀的结构设计,得出的结论是,五支腿的五边形阀瓣产生更高的频率和强度,而四支腿的设计没有固有的旋转问题。 NiTi五脚设计是使用新颖的MEMS制造方法制造的。双层剥离方法被用于生产非旋转的正交平面NiTi MEMS微阀阵列,而没有传统NiTi湿法刻蚀所固有的问题。该阵列由65个微型阀组成,单个阀门的尺寸为周长1mm,腿宽50微米,NiTi厚度8.2微米。每个微阀覆盖直径为220微米,长度为500微米的孔,并且该微阀能够产生150微米的垂直偏转。测试了NiTi MEMS阀阵列在液压系统中的流速与施加压力的关系,最大水流速为16.44 cc / s .;还提出了一种控制NiTi膜表面皱纹的新颖概念。 ANSYSRTM用于确定膜的长度和宽度以及厚度,以在NiTi测试样品中产生皱纹。在NiTi 20.9 mmx10.8 mmx5.54微米样品上进行的测试结果在约1%的应变下产生了皱纹,这是临界应变(epsiloncr)。利用相变特性和相应的刚度变化,可以简单地通过相变来改变温度来进行起皱控制(即,将其打开和关闭)。皱纹的最大幅度为44.8 +/- 6.4微米,波长为2.10 +/- 0.40毫米,与分析结果相对较好。

著录项

  • 作者

    Seong, Myunghoon.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号