首页> 外文学位 >Reconfigurable application-specific instrumentation and control integrated systems.
【24h】

Reconfigurable application-specific instrumentation and control integrated systems.

机译:可重新配置的专用仪器和控制集成系统。

获取原文
获取原文并翻译 | 示例

摘要

Many applications in motorcontrollers, biosignal acquisition system and energy cells balancers require reconfigurable and adaptive architectures to adjust to environmental perturbations in real time thereby avoiding performance degradations. The complexity of designing systems that overcome these perturbations is challenging, requiring robust architectures. Our philosophy is that such systems need to be programmable, such that their performance parameters can be adjusted by controllers higher up in the system hierarchy and/or automatically using closed loop adaptation rules that use sensory data from the environment to which they are connected. Hence, we present mixed signal integrated system-on-a-chip (SoC) microsystems, which combine on-chip reconfigurable and adaptive circuit capabilities to deliver fine, robust and precise control signals to the driver networks or electrodes, i.e. drivers for motors, battery rechargers and bio-signal amplifiers. Though we focus on motorcontroller, biosignal acquisition and energy storage systems, the circuit components and architectures have applications in other arenas.;The first part of this work focuses on designing motorcontrollers for controlling high dexterity robots used in minimally invasive surgery (MIS) of the throat. This MIS is characterized by the insertion of endoscopes and multiple long tools through the laryngoscope into the patient's mouth. Current manual instrumentation is awkward, hard to manipulate precisely, and lacks sufficient dexterity to permit common surgical subtasks such as suturing vocal fold tissue. This clinical problem motivated the development of a telesurgical robot for MIS of the upper airway including the throat and larynx. The chips developed in this work provide the low-latency, high precision controls signals required to manipulate delicate tissue while minimizing damage. The chips use motor armature and encoder feedbacks to control its speed, torque and position over a wide operating range. This requires integration of digital interface, data conversion, signal conditioning and algorithmic computation. With SPI interface and on-chip programmability, the chips can also find applications in toys, video-game hardware, and industrial robot, among others.;In the second part, we show the design of a biosignal acquisition system with tunable gain and bandwidth, and variable quantization resolutions for acquiring common biosignals such as EEG, EOG, ECG, NR and EMG. These signals have different bandwidths, noise, and amplitudes that make their acquisitions using a single chip challenging. More so, the era of multi-electrode recording demands very low-power, low-noise instrumentations from external electro-muscular to implanted cortical measurements. We show an on-the-fly, reconfigurable custom System-on-a-Chip (SoC) that can acquire and process these signals. Measurements of human EMG and ECG with the chip compare favorably with those from their commercial counterparts. However, we achieved our results at very lower power consumption, system compactness and cost.;Lastly, we present high precision analog front-ends for energy cells balancers. We utilize switched capacitor techniques to design these components which enable cells monitoring, less than 1mV variation detection, overcurrent protection and equalization within 25ns. Using auto-zeroing amplifiers and adaptive hysteretic comparators with on-chip reference trimming, the system beats the industry state of the art detection level by a factor of 5.
机译:电机控制器,生物信号采集系统和能量电池平衡器中的许多应用都需要可重新配置和自适应的体系结构,以实时适应环境扰动,从而避免性能下降。克服这些干扰的设计系统的复杂性具有挑战性,需要鲁棒的架构。我们的理念是,此类系统需要可编程,以便其性能参数可以由系统层次结构中更高级别的控制器进行调整和/或使用闭环自适应规则自动调整,该规则使用来自与其连接的环境的感官数据。因此,我们提出了混合信号集成的片上系统(SoC)微型系统,这些系统结合了片上可重构和自适应电路功能,可以向驱动器网络或电极(即电动机的驱动器)提供精细,鲁棒和精确的控制信号。电池充电器和生物信号放大器。尽管我们专注于电机控制器,生物信号采集和能量存储系统,但电路组件和架构在其他领域也有应用。本工作的第一部分着重于设计电机控制器,以控制用于机器人微创手术(MIS)的高灵巧机器人。喉。这种MIS的特点是通过喉镜将内窥镜和多个长工具插入患者的口腔。当前的手动器械笨拙,难以精确地操作,并且缺乏足够的灵活性以允许常见的外科手术子任务,例如缝合声带组织。该临床问题促使开发用于包括咽喉和喉部的上呼吸道MIS的远程外科手术机器人。在这项工作中开发的芯片提供了低延迟,高精度的控制信号,可操纵脆弱的组织,同时最大程度地减少损坏。这些芯片利用电机电枢和编码器反馈来在较宽的工作范围内控制其速度,转矩和位置。这需要集成数字接口,数据转换,信号调理和算法计算。借助SPI接口和片上可编程性,这些芯片还可用于玩具,视频游戏硬件和工业机器人等应用中。第二部分,我们展示了具有可调增益和带宽的生物信号采集系统的设计。 ,以及用于获取常见生物信号(例如EEG,EOG,ECG,NR和EMG)的可变量化分辨率。这些信号具有不同的带宽,噪声和幅度,这使得使用单个芯片进行采集具有挑战性。更重要的是,多电极记录时代要求从外部电肌肉测量到植入的皮层测量都需要非常低功耗,低噪声的仪器。我们展示了一种实时的,可重新配置的定制片上系统(SoC),它可以获取和处理这些信号。使用该芯片对人的EMG和ECG进行的测量与商用产品相比具有优势。但是,我们以非常低的功耗,系统紧凑性和成本实现了我们的结果。最后,我们提出了用于能量电池平衡器的高精度模拟前端。我们利用开关电容器技术来设计这些组件,以实现电池监控,小于1mV的变化检测,过流保护和25ns内的均衡。该系统使用自动归零放大器和自适应磁滞比较器以及片内基准电压调整功能,使该系统的检测水平比业界最先进的检测水平高出5倍。

著录项

  • 作者

    Ekekwe, Ndubuisi J.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号