首页> 外文学位 >Monte Carlo simulation studies of DNA hybridization and DNA-directed nanoparticle assembly.
【24h】

Monte Carlo simulation studies of DNA hybridization and DNA-directed nanoparticle assembly.

机译:DNA杂交和DNA定向纳米粒子组装的蒙特卡洛模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

A coarse-grained lattice model of DNA oligonucleotides is proposed to investigate how fundamental thermodynamic processes are encoded by the nucleobase sequence at the microscopic level, and to elucidate the general mechanisms by which single-stranded oligonucleotides hybridize to their complements either in solution or when tethered to nanoparticles.;Molecular simulations based on a high-coordination cubic lattice are performed using the Monte Carlo method. The dependence of the model's thermal stability on sequence complementarity is shown to be qualitatively consistent with experiment and statistical mechanical models. From the analysis of the statistical distribution of base-paired states and of the associated free-energy landscapes, two general hybridization scenarios are found. For sequences that do not follow a two-state process, hybridization is weakly cooperative and proceeds in multiple sequential steps involving stable intermediates with increasing number of paired bases. In contrast, sequences that conform to two-state thermodynamics exhibit moderately rough landscapes, in which multiple metastable intermediates appear over broad free-energy barriers. These intermediates correspond to duplex species that bridge the configurational and energetic gaps between duplex and denatured states with minimal loss of conformational entropy, and lead to a strongly cooperative hybridization. Remarkably, two-state thermodynamic signatures are generally observed in both scenarios.;The role of cooperativity in the assembly of nanoparticles tethered with model DNA oligonucleotides is similarly addressed with the Monte Carlo method, where nanoparticles are represented as finely discretized hard-core spheres on a cubic lattice. The energetic and structural mechanisms of self-assembling are investigated by simulating the aggregation of small "satellite" particles from the bulk onto a large "core" particle. A remarkable enhancement of the system's thermal stability is attained by increasing the number of strands per satellite particle available to hybridize with those on the core particle. This cooperative process is driven by the formation of multiple bridging duplexes under favorable conditions of reduced translational entropy and the resultant energetic compensation; this behavior rapidly weakens above a certain threshold of linker strands per satellite particle. Cooperativity also enhances the structural organization of the assemblies by systematically narrowing the radial distribution of the satellite particles bound the core.
机译:提出了DNA寡核苷酸的粗粒晶格模型,以研究微观水平上核碱基序列如何编码基本的热力学过程,并阐明溶液或系链时单链寡核苷酸与其互补序列杂交的一般机制。使用蒙特卡洛方法进行基于高配位立方晶格的分子模拟。该模型的热稳定性对序列互补性的依赖性被证明与实验和统计力学模型在质量上是一致的。通过对碱基配对状态和相关自由能态的统计分布的分析,发现了两种一般的杂交情况。对于不遵循两个状态过程的序列,杂交是弱协作的,并且在多个连续步骤中进行,涉及稳定的中间产物,其配对碱基的数量增加。相反,符合两种状态的热力学序列表现出中等程度的粗糙态势,其中多个亚稳中间体出现在较宽的自由能垒上。这些中间体对应于双链体物种,该双链体物种以最小的构象熵损失弥合了双链体和变性态之间的构型和能量间隙,并导致了强合作性杂交。值得注意的是,在两种情况下通常都观察到两种状态的热力学特征。;协同作用在与模型DNA寡核苷酸拴在一起的纳米颗粒组装中的作用也用蒙特卡洛方法相似地解决了,其中纳米颗粒表示为细分散的硬核球立方晶格。通过模拟小“卫星”粒子从团块到大“核”粒子的聚集,研究了自组装的能量和结构机理。通过增加每个卫星粒子可与核心粒子杂交的链数,可以显着提高系统的热稳定性。这种协作过程是由在减少平移熵和产生的能量补偿的有利条件下形成多个桥联双链体驱动的。在每个卫星粒子的连接子链达到某个阈值以上时,这种行为会迅速减弱。合作性还通过系统地缩小束缚核心的卫星粒子的径向分布来增强组件的结构组织。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号