首页> 外文学位 >Laser direct-write microfabrication and patterning.
【24h】

Laser direct-write microfabrication and patterning.

机译:激光直接写入微加工和图案化。

获取原文
获取原文并翻译 | 示例

摘要

The ability to generate small structures is central to modern science and technology. In this work, four laser direct-write microfabrication and micropatterning techniques were studied: (a) Laser micromachining of channels in PMMA using a CO2 laser was investigated experimentally and theoretically. Heat transfer models for the channel depth, channel profile, laser power and scanning speed were developed and applied in this work. These models, are in excellent agreement with experimental results, with a maximum deviation of approximately 5% for the range of experimental parameters (laser power, scanning speed) tested. (b) A sub-micrometer resolution laser direct-write polymerization system for 1 creating two-dimensional and three-dimensional structures was developed using a frequency-doubled Nd:YAG laser. Experimental studies and Monte Carlo simulations were conducted to understand the detailed microscale optical scattering, chemical reaction, polymerization, and their influence on critical fabrication parameters. The experimental data are in good agreement with the theoretical model. (c) Direct laser interference was developed for rapid and large area fabrication of two-dimensional and three dimensional periodic structures on photopolymerizable materials with 10ns pulses from a frequency-tripled Nd:YAG laser emitting at 355 nm. Three different photopolymerizable materials were investigated: pentaerythritol triacrylate (PETIA) with photoinitiator N-methyldiethanolamine (N-MDEA); SU-8 with absorber TINUVIN 384-2; and Shipley 1813. (d) A new approach to fabricating nanometer sized cavity arrays on Poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) thin films using laser-assisted near-field patterning was investigated. Periodic nano-cavity arrays were patterned by combining direct laser interference technology and laser induced near-field technology. An analytical model based on Mie theory was developed, the predicted intensity distributions on the substrate indicate a strong near-field enhancement confined to a very small area (nanometer scale).
机译:生成小型结构的能力是现代科学和技术的核心。在这项工作中,研究了四种激光直接写入微加工和微图案化技术:(a)实验和理论上研究了使用CO2激光对PMMA中的通道进行激光微加工。开发了用于通道深度,通道轮廓,激光功率和扫描速度的传热模型,并将其应用于这项工作。这些模型与实验结果非常吻合,对于测试的实验参数(激光功率,扫描速度)范围,最大偏差约为5%。 (b)使用倍频的Nd:YAG激光器开发了一种亚微米分辨率的激光直写聚合系统,该系统可创建二维和三维结构。进行了实验研究和蒙特卡洛模拟,以了解详细的微尺度光学散射,化学反应,聚合及其对关键制造参数的影响。实验数据与理论模型吻合良好。 (c)开发了直接激光干涉,以在三倍于355 nm发射的Nd:YAG倍频激光中,以10ns脉冲在可光聚合材料上快速大面积地制造二维和三维周期性结构。研究了三种不同的可光聚合材料:季戊四醇三丙烯酸酯(PETIA)和光引发剂N-甲基二乙醇胺(N-MDEA); SU-8带减震器TINUVIN 384-2;和Shipley1813。(d)研究了一种利用激光辅助近场图案在聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT-PSS)薄膜上制造纳米级腔阵列的新方法。通过结合直接激光干涉技术和激光感应近场技术对周期性的纳米腔阵列进行构图。建立了基于米氏理论的分析模型,在基板上预测的强度分布表明局限在很小的面积(纳米级)内的强近场增强。

著录项

  • 作者

    Yuan, Dajun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号