首页> 外文学位 >Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles
【24h】

Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

机译:水性前体的非晶态金属氧化物薄膜:高κ电介质的新途径,大气湿度退火的影响以及不均匀成分分布的阐明

获取原文
获取原文并翻译 | 示例

摘要

Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing.;Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II.;This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions.;This dissertation includes previously published coauthored material.
机译:金属氧化物薄膜是包括微电子设备在内的许多现代技术的重要组成部分。工业最新生产利用气相技术制造高质量(致密,光滑,均匀)的薄膜材料。然而,气相技术需要大量的能量输入以及昂贵的设备和前体。作为气相法的经济有效替代方法,固溶相法制备金属氧化物引起了人们极大的兴趣,并且还提供了大面积覆盖,易于控制金属成分和低温处理的潜力。以溶胶-凝胶途径为主,利用有机配体,添加剂和/或溶剂。但是,溶胶-凝胶薄膜通常是多孔的,并且含有残留的碳杂质,这会对器件的性能产生负面影响。全无机水性途径可产生致密的,超光滑的薄膜,而没有碳杂质,但是将水性前体转化为金属氧化物的机理实际上尚未被探索。了解这些机制和影响它们的参数对于广泛使用水性方法制备微电子元件至关重要。另外,理解(和控制)密度和组成不均匀性对于优化电子性能很重要。第一章概述了沉积方法和水相途径所面临的挑战。第二章概述了这项工作的核心薄膜表征技术。本论文通过重点研究三种方法,为溶液相沉积领域做出了贡献。地区。首先,为两个三元体系开发了一种高无机金属氧化物电介质的全无机水性途径。第三章和第四章分别详细介绍了氧化镧锆(LZO)和氧化铝锆(ZAO)的成膜化学和膜性能。还演示了这些电介质作为设备组件的功能。第二,报道了蒸汽退火对水成膜的演变的影响。第五章证明了蒸汽退火通过有效地减少残留抗衡离子含量,提高膜在吸水率方面的稳定性以及增强LZO膜的介电性能来降低加工温度。第三,研究了水衍生膜的密度和组成不均匀性。第六章和第七章分别研究了单金属和多金属成分薄膜的密度不均匀性,并表明这些密度不均匀性与金属成分的不均匀性有关。

著录项

  • 作者

    Woods, Keenan N.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号