首页> 中文期刊> 《地球科学前沿:英文版》 >Study of corrosion mechanism of dawsonite led by CO_(2)partial pressure

Study of corrosion mechanism of dawsonite led by CO_(2)partial pressure

         

摘要

The stability of dawsonite is an important factor affecting the feasibility evaluation of CO_(2)geological storage.In this paper,a series of experiments on the interaction of CO_(2)-water-dawsonite-bearing sandstone were carried out under different CO_(2)pressures.Considering the dissolution morphology and element composition of dawsonite after the experiment and the fluid evolution in equilibrium with dawsonite,the corrosion mechanism of dawsonite led by CO_(2)partial pressure was discussed.The CO_(2)fugacity of the vapor phase in the system was calculated using the Peng-Robinson equation of state combined with the van der Waals 1-fluid mixing rule.The experimental results indicated that the thermodynamic stability of dawsonite increased with the increase of CO_(2)partial pressure and decreased with the increase of temperature.The temperature at which dawsonite dissolution occurred was higher at higher f_(CO_(2)).There were two different ways to reduce dawsonite’s stability:the transformation of constituent elements and crystal structure damage.Dawsonite undergoes component element transformation and crystal structure damage under different CO_(2)pressures with certain temperature limits.Based on the comparison of the corrosion temperature of dawsonite,three corrosion evolution models of dawsonite under low,medium,and high CO_(2)pressures were summarized.Under conditions of medium and low CO_(2)pressure,as the temperature continued to increase and exceeded its stability limit,the dawsonite crystal structure was corroded first.Then the constituent elements of dawsonite dissolved,and the transformation of dawsonite to gibbsite began.At high CO_(2)pressure,the constituent elements of dawsonite dissolved first with the increase of temperature,forming gibbsite,followed by the corrosion of crystalline structure.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号