首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces
【2h】

Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

机译:最佳反馈控制成功地解释了脑机接口实验期间神经调制的变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
机译:最近使用脑机接口(BMI)进行的实验表明,神经调节的程度在开始操作该接口时会突然增加,尤其是在猴子停止移动其手之后。相反,与运动的运动学相关的神经调制保持相对不变。在这里,我们证明了类似的变化是由模拟的神经元产生的,这些神经元对模拟的BMI实验期间由最佳反馈控制器生成的相关信号进行编码。最佳反馈控制器依赖于状态估计,该状态估计将视觉和本体感觉反馈与内部模型的先前估计相集成。在状态空间中进行最佳状态估计和控制所需的处理,并通过对两个仅编码估计状态或控制信号的神经元群体进行建模来模拟神经记录。峰值计数是通过线性调整曲线实现的双重随机Poisson过程的生成。该模型成功地重建了常规伸手运动期间的运动学和神经活动的主要特征。最重要的是,模拟神经元的活动成功地再现了在切换到大脑控制后观察到的神经调节变化。进一步的理论分析和模拟表明,在正常到达运动期间增加过程噪声会导致神经调制发生类似变化。因此,我们得出结论,在BMI实验期间观察到的神经调制变化可以归因于与不完善的BMI滤波器相关的过程噪声的增加,更直接地,归因于与状态估计和噪声相关的编码信号方差的增加。所需的控制信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号