首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling
【2h】

Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

机译:两种碳化硅抗张强度的应变率敏感性:实验证据和微力学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.
机译:陶瓷材料由于其良好的物理和机械性能而通常用于设计多层装甲系统。然而,在冲击事件期间,由于陶瓷板在拉伸载荷下固有的脆性而不可避免地发生碎裂。因此,为了获得理想的装甲构型的最佳设计,必须有一个精确的破碎过程模型。在这项工作中,已经使用以下方法在两种应变速率为10 3 到10 4 s -1 的碳化硅上执行了无冲击散裂测试。高脉冲发电机。这些剥落测试表征了每种陶瓷等级的抗拉强度,应变率敏感性。陶瓷的微观结构性质似乎对应变速率敏感性和动态抗张强度起着重要作用。此外,这种实验配置可以回收损坏但未破裂的样品,从而对陶瓷中引发的破碎过程提供了独特的见解。所有收集的数据已与使用Denoual–Forquin–Hild各向异性损伤模型进行的数值模拟的相应结果进行了比较。在自由表面速度,损坏区域的大小和位置以及这些损坏区域的裂纹密度方面,在数值模拟和实验数据之间观察到了很好的一致性。本文是主题问题“在...处进行脆性材料的实验测试和建模”的一部分高应变率”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号