首页> 美国卫生研究院文献>Scientific Reports >Photoluminescence of planar and 3D InGaN/GaN LED structures excited with femtosecond laser pulses close to the damage threshold
【2h】

Photoluminescence of planar and 3D InGaN/GaN LED structures excited with femtosecond laser pulses close to the damage threshold

机译:飞秒激光脉冲激发的接近损坏阈值的平面和3D InGaN / GaN LED结构的光致发光

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the photoluminescence emission from planar and 3D InGaN/GaN LED structures, excited using a femtosecond laser with fluences close to sample’s damage threshold. For a typical laser system consisting of a titanium-sapphire regenerative amplifier, which is pumping an optical parametric amplifier delivering output pulses of a few tens of MW pulse power with ∼100 fs pulse duration, 1 kHz repetition rate and a wavelength of 325 nm, we determine the damage threshold of the InGaN/GaN LEDs to be about 0.05 J/cm2. We find that the relative intensity of the GaN photoluminescence (PL) and InGaN PL changes significantly close to the damage threshold. The changes are irreversible once the damage threshold is exceeded. As the damage threshold is approached, the InGaN luminescence band blue-shifts by several tens of meV, which is attributed to band filling effects. The PL decay time reduces substantially, by about 30%, when the excitation energy density is increased by approximately two orders of magnitude. The results are comparable for 2D and 3D LED structures, where in the latter case m-plane QWs exhibit different recombination dynamics because of the absence of the quantum confined Stark effect.
机译:我们研究了用飞秒激光激发的平面和3D InGaN / GaN LED结构的光致发光,其通量接近样品的损伤阈值。对于由钛-蓝宝石再生放大器组成的典型激光系统,该泵浦正在泵浦一个光学参量放大器,该放大器可输出几十兆瓦脉冲功率的输出脉冲,脉冲持续时间约为100 fs,重复频率为1 kHz,波长为325 nm,我们确定InGaN / GaN LED的损伤阈值约为0.05 J / cm 2 。我们发现,GaN光致发光(PL)和InGaN PL的相对强度显着接近损伤阈值。一旦超过损坏阈值,则更改是不可逆的。随着接近损伤阈值,InGaN发光带蓝移了数十meV,这归因于带填充效应。当激发能量密度增加大约两个数量级时,PL衰减时间将大幅减少大约30%。结果与2D和3D LED结构相当,在后者中,由于缺乏量子限制的Stark效应,m平面QW表现出不同的重组动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号