首页> 美国卫生研究院文献>other >Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations
【2h】

Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations

机译:电容式微机械超声波换能器使用商业多用户腮腺组流程:功能和限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this work is to construct capacitive micromachined ultrasouind transducers (cMUTs) using multi-user MEMS (MicroElectroMechanical Systems) process (MUMPs) and to analyze the capability of this process relative to the customized processes commonly in use. The MUMPs process has the advantages of low cost and accessibility to general users since it is not necessary to have access to customized fabrication capability such as wafer-bonding and sacrificial release processes. While other researchers have reported fabricating cMUTs using the MUMPs process none has reported the limitations in the process that arise due to the use of standard design rules that place limitations on the material thicknesses, gap thicknesses, and materials that may be used. In this paper we explain these limitations, and analyze the capabilities using 1D modeling, Finite Element Analysis, and experimental devices. We show that one of the limitations is that collapse voltage and center frequency can not be controlled independently. However, center frequencies up to 9 MHz can be achieved with collapse voltages of less than 200 volts making such devices suitable for medical and non-destructive evaluation imaging applications. Since the membrane and base electrodes are made of polysilicon, there is a larger series resistance than that resulting from processes that use metal electrodes. We show that the series resistance is not a significant problem. The conductive polysilicon can also destroy the cMUT if the top membrane is pulled in the bottom. As a solution we propose the application of an additional dielectric layer. Finally we demonstrate a device built with a novel beam construction that produces transmitted pressure pulse into air with 6% bandwidth and agrees reasonably well with the 1D model. We conclude that cMUTS made with MUMPS process have some limitations that are not present in customized processes. However these limitations may be overcome with the proper design considerations that we have presented putting a low cost, highly accessible means of making cMUT devices into the hands of academic and industrial researchers.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号