首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals
【2h】

Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals

机译:薄板金属疲劳裂纹生长AE信号的分析与实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The acoustic emission (AE) method is a very popular and well-developed method for passive structural health monitoring of metallic and composite structures. AE method has been efficiently used for damage source detection and damage characterization in a large variety of structures over the years, such as thin sheet metals. Piezoelectric wafer active sensors (PWASs) are lightweight and inexpensive transducers, which recently drew the attention of the AE research community for AE sensing. The focus of this paper is on understanding the fatigue crack growth AE signals in thin sheet metals recorded using PWAS sensors on the basis of the Lamb wave theory and using this understanding for predictive modeling of AE signals. After a brief introduction, the paper discusses the principles of sensing acoustic signals by using PWAS. The derivation of a closed-form expression for PWAS response due to a stress wave is presented. The transformations happening to the AE signal according to the instrumentations we used for the fatigue crack AE experiment is also discussed. It is followed by a summary of the in situ AE experiments performed for recording fatigue crack growth AE and the results. Then, we present an analytical model of fatigue crack growth AE and a comparison with experimental results. The fatigue crack growth AE source was modeled analytically using the dipole moment concept. By using the source modeling concept, the analytical predictive modeling and simulation of the AE were performed using normal mode expansion (NME). The simulation results showed good agreement with experimental results. A strong presence of nondispersive S0 Lamb wave mode due to the fatigue crack growth event was observed in the simulation and experiment. Finally, the analytical method was verified using the finite element method. The paper ends with a summary and conclusions; suggestions for further work are also presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号