首页> 外文期刊>Advanced energy materials >Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
【24h】

Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

机译:原子层沉积作为通用方法可将任何3D打印电极变成所需的催化剂:光电化学中的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstromano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.
机译:3D打印技术已经开始彻底改变许多制造工艺,但是,仍然存在许多尚待克服的局限性。特别地,用于制造产品的材料受到3D打印材料前体的限制。特别地,对于光电化学(PEC)能量应用,可以将原样使用的电极原样使用,或者可以通过后制造工艺(例如,电化学沉积或阳极氧化)对其进行改性,以在3D打印的电极上产生活性层。然而,这样印刷的电极对于各种PEC能量应用而言是相对惰性的,并且前述的后制造处理技术不能在埃/纳纳米级上提供层的一致性或控制。在此,原子层沉积(ALD)首次与金属3D打印结合使用以创建有源电极。为了说明概念验证,通过ALD将TiO2沉积到不锈钢3D打印电极上,然后将其作为PEC水氧化的光阳极进行研究。此外,通过用ALD调节TiO2的厚度,可以优化活性。通过将3D打印和ALD相结合,代替其他金属沉积技术(例如溅射),可以将具有可控制厚度的所需材料的电极快速原型制作到具有任何孔隙度的印刷电极上,这可以有益于多种能源应用。

著录项

  • 来源
    《Advanced energy materials》 |2019年第26期|1900994.1-1900994.10|共10页
  • 作者单位

    Univ Chem & Technol Prague, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague 16628 6, Czech Republic;

    Univ Chem & Technol Prague, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague 16628 6, Czech Republic;

    Univ Chem & Technol Prague, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague 16628 6, Czech Republic;

    Univ Chem & Technol Prague, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague 16628 6, Czech Republic;

    Univ Chem & Technol Prague, Dept Inorgan Chem, Ctr Adv Funct Nanorobots, Tech 5, Prague 16628 6, Czech Republic|Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea|Brno Univ Technol, Cent European Inst Technol, Future Energy & Innovat Lab, Purkynova 656-123, CZ-61600 Brno, Czech Republic;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D-printing; atomic layer deposition; photoelectrochemical water splitting; TiO2;

    机译:3D印刷;原子层沉积;光电化学水分裂;TiO2;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号